#include "surfscan.h" #include "opencv2/calib3d/calib3d.hpp" #include "opencv2/objdetect/objdetect.hpp" #include "opencv2/features2d/features2d.hpp" #include #include #include #include using namespace std; // define whether to use approximate nearest-neighbor search #define USE_FLANN double compareSURFDescriptors( const float* d1, const float* d2, double best, int length ) { double total_cost = 0; assert( length % 4 == 0 ); for( int i = 0; i < length; i += 4 ) { double t0 = d1[i ] - d2[i ]; double t1 = d1[i+1] - d2[i+1]; double t2 = d1[i+2] - d2[i+2]; double t3 = d1[i+3] - d2[i+3]; total_cost += t0*t0 + t1*t1 + t2*t2 + t3*t3; if( total_cost > best ) break; } return total_cost; } int naiveNearestNeighbor( const float* vec, int laplacian, const CvSeq* model_keypoints, const CvSeq* model_descriptors ) { int length = (int)(model_descriptors->elem_size/sizeof(float)); int i, neighbor = -1; double d, dist1 = 1e6, dist2 = 1e6; CvSeqReader reader, kreader; cvStartReadSeq( model_keypoints, &kreader, 0 ); cvStartReadSeq( model_descriptors, &reader, 0 ); for( i = 0; i < model_descriptors->total; i++ ) { const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr; const float* mvec = (const float*)reader.ptr; CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader ); CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); if( laplacian != kp->laplacian ) continue; d = compareSURFDescriptors( vec, mvec, dist2, length ); if( d < dist1 ) { dist2 = dist1; dist1 = d; neighbor = i; } else if ( d < dist2 ) dist2 = d; } if ( dist1 < 0.6*dist2 ) return neighbor; return -1; } void findPairs( const CvSeq* objectKeypoints, const CvSeq* objectDescriptors, const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, vector& ptpairs ) { int i; CvSeqReader reader, kreader; cvStartReadSeq( objectKeypoints, &kreader ); cvStartReadSeq( objectDescriptors, &reader ); ptpairs.clear(); for( i = 0; i < objectDescriptors->total; i++ ) { const CvSURFPoint* kp = (const CvSURFPoint*)kreader.ptr; const float* descriptor = (const float*)reader.ptr; CV_NEXT_SEQ_ELEM( kreader.seq->elem_size, kreader ); CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); int nearest_neighbor = naiveNearestNeighbor( descriptor, kp->laplacian, imageKeypoints, imageDescriptors ); if( nearest_neighbor >= 0 ) { ptpairs.push_back(i); ptpairs.push_back(nearest_neighbor); } } } void flannFindPairs( const CvSeq*, const CvSeq* objectDescriptors, const CvSeq*, const CvSeq* imageDescriptors, vector& ptpairs ) { int length = (int)(objectDescriptors->elem_size/sizeof(float)); cv::Mat m_object(objectDescriptors->total, length, CV_32F); cv::Mat m_image(imageDescriptors->total, length, CV_32F); // copy descriptors CvSeqReader obj_reader; float* obj_ptr = m_object.ptr(0); cvStartReadSeq( objectDescriptors, &obj_reader ); for(int i = 0; i < objectDescriptors->total; i++ ) { const float* descriptor = (const float*)obj_reader.ptr; CV_NEXT_SEQ_ELEM( obj_reader.seq->elem_size, obj_reader ); memcpy(obj_ptr, descriptor, length*sizeof(float)); obj_ptr += length; } CvSeqReader img_reader; float* img_ptr = m_image.ptr(0); cvStartReadSeq( imageDescriptors, &img_reader ); for(int i = 0; i < imageDescriptors->total; i++ ) { const float* descriptor = (const float*)img_reader.ptr; CV_NEXT_SEQ_ELEM( img_reader.seq->elem_size, img_reader ); memcpy(img_ptr, descriptor, length*sizeof(float)); img_ptr += length; } // find nearest neighbors using FLANN cv::Mat m_indices(objectDescriptors->total, 2, CV_32S); cv::Mat m_dists(objectDescriptors->total, 2, CV_32F); cv::flann::Index flann_index(m_image, cv::flann::KDTreeIndexParams(4)); // using 4 randomized kdtrees flann_index.knnSearch(m_object, m_indices, m_dists, 2, cv::flann::SearchParams(64) ); // maximum number of leafs checked int* indices_ptr = m_indices.ptr(0); float* dists_ptr = m_dists.ptr(0); //printf("flannFindPairs %d m_indices.rows=%d\n", __LINE__, m_indices.rows); for (int i = 0; i < m_indices.rows; ++i) { //printf("flannFindPairs %d dists=%f %f\n", __LINE__, dists_ptr[2 * i], 0.6 * dists_ptr[2 * i + 1]); if (dists_ptr[2 * i] < 0.6 * dists_ptr[2 * i + 1]) { //printf("flannFindPairs %d pairs=%d\n", __LINE__, ptpairs.size()); ptpairs.push_back(i); ptpairs.push_back(indices_ptr[2*i]); } } } /* a rough implementation for object location */ int locatePlanarObject(const CvSeq* objectKeypoints, const CvSeq* objectDescriptors, const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, const CvPoint src_corners[4], CvPoint dst_corners[4], int *(*point_pairs), int (*total_pairs)) { double h[9]; CvMat _h = cvMat(3, 3, CV_64F, h); vector ptpairs; vector pt1, pt2; CvMat _pt1, _pt2; int i, n; (*point_pairs) = 0; (*total_pairs) = 0; #ifdef USE_FLANN flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #else findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #endif // Store keypoints (*point_pairs) = (int*)calloc(ptpairs.size(), sizeof(int)); (*total_pairs) = ptpairs.size() / 2; for(int i = 0; i < (int)ptpairs.size(); i++) { (*point_pairs)[i] = ptpairs[i]; } n = (int)(ptpairs.size()/2); if( n < 4 ) return 0; pt1.resize(n); pt2.resize(n); for( i = 0; i < n; i++ ) { pt1[i] = ((CvSURFPoint*)cvGetSeqElem(objectKeypoints,ptpairs[i*2]))->pt; pt2[i] = ((CvSURFPoint*)cvGetSeqElem(imageKeypoints,ptpairs[i*2+1]))->pt; } _pt1 = cvMat(1, n, CV_32FC2, &pt1[0] ); _pt2 = cvMat(1, n, CV_32FC2, &pt2[0] ); if( !cvFindHomography( &_pt1, &_pt2, &_h, CV_RANSAC, 5 )) return 0; for( i = 0; i < 4; i++ ) { double x = src_corners[i].x, y = src_corners[i].y; double Z = 1./(h[6]*x + h[7]*y + h[8]); double X = (h[0]*x + h[1]*y + h[2])*Z; double Y = (h[3]*x + h[4]*y + h[5])*Z; dst_corners[i] = cvPoint(cvRound(X), cvRound(Y)); } return 1; } void locate_points(const CvSeq* objectKeypoints, const CvSeq* objectDescriptors, const CvSeq* imageKeypoints, const CvSeq* imageDescriptors, int *(*points), int *(*sizes), int (*total_points)) { vector ptpairs; #ifdef USE_FLANN flannFindPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #else findPairs( objectKeypoints, objectDescriptors, imageKeypoints, imageDescriptors, ptpairs ); #endif (*points) = (int*)calloc(ptpairs.size(), sizeof(int) * 2); (*sizes) = (int*)calloc(ptpairs.size(), sizeof(int)); (*total_points) = ptpairs.size(); for(int i = 0; i < (int)ptpairs.size(); i += 2 ) { CvSURFPoint* r1 = (CvSURFPoint*)cvGetSeqElem( objectKeypoints, ptpairs[i] ); CvSURFPoint* r2 = (CvSURFPoint*)cvGetSeqElem( imageKeypoints, ptpairs[i+1] ); (*points)[i * 2] = r2->pt.x; (*points)[i * 2 + 1] = r2->pt.y; (*sizes)[i] = r2->size; } }