/* * CINELERRA * Copyright (C) 2012 Adam Williams * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "affine.h" #include "bcdisplayinfo.h" #include "clip.h" #include "bchash.h" #include "bcsignals.h" #include "filexml.h" #include "keyframe.h" #include "language.h" #include "motion.h" #include "motionscan.h" #include "motionwindow.h" #include "mutex.h" #include "overlayframe.h" #include "rotateframe.h" #include "transportque.h" #include #include REGISTER_PLUGIN(MotionMain) #undef DEBUG // #ifndef DEBUG // #define DEBUG // #endif MotionConfig::MotionConfig() { global_range_w = 10; global_range_h = 10; rotation_range = 5; rotation_center = 0; block_count = 1; global_block_w = 50; // MIN_BLOCK; global_block_h = 50; // MIN_BLOCK; // rotation_block_w = MIN_BLOCK; // rotation_block_h = MIN_BLOCK; block_x = 50; block_y = 50; global_positions = 256; rotate_positions = 4; magnitude = 25; rotate_magnitude = 30; return_speed = 8; rotate_return_speed = 8; action_type = MotionScan::STABILIZE_PIXEL; global = 1; rotate = 1; addtrackedframeoffset = 0; tracking_type = MotionScan::CALCULATE; draw_vectors = 0; tracking_object = MotionScan::TRACK_PREVIOUS; track_frame = 0; bottom_is_master = 1; horizontal_only = 0; vertical_only = 0; } void MotionConfig::set_cpus(int cpus) { int gpos = 64, gpos_limit = 16 * cpus; if( gpos_limit > 131072 ) gpos_limit = 131072; while( gpos < gpos_limit ) gpos *= 2; global_positions = gpos; int rpos = 4, rpos_limit = cpus / 4; if( rpos_limit > 32 ) gpos_limit = 32; while( rpos < rpos_limit ) rpos *= 2; rotate_positions = rpos; } void MotionConfig::boundaries() { CLAMP(global_range_w, MIN_RADIUS, MAX_RADIUS); CLAMP(global_range_h, MIN_RADIUS, MAX_RADIUS); CLAMP(rotation_range, MIN_ROTATION, MAX_ROTATION); CLAMP(rotation_center, -MAX_ROTATION, MAX_ROTATION); CLAMP(block_count, MIN_BLOCKS, MAX_BLOCKS); CLAMP(global_block_w, MIN_BLOCK, MAX_BLOCK); CLAMP(global_block_h, MIN_BLOCK, MAX_BLOCK); // CLAMP(rotation_block_w, MIN_BLOCK, MAX_BLOCK); // CLAMP(rotation_block_h, MIN_BLOCK, MAX_BLOCK); } int MotionConfig::equivalent(MotionConfig &that) { return global_range_w == that.global_range_w && global_range_h == that.global_range_h && rotation_range == that.rotation_range && rotation_center == that.rotation_center && action_type == that.action_type && global == that.global && rotate == that.rotate && addtrackedframeoffset == that.addtrackedframeoffset && draw_vectors == that.draw_vectors && block_count == that.block_count && global_block_w == that.global_block_w && global_block_h == that.global_block_h && // rotation_block_w == that.rotation_block_w && // rotation_block_h == that.rotation_block_h && EQUIV(block_x, that.block_x) && EQUIV(block_y, that.block_y) && global_positions == that.global_positions && rotate_positions == that.rotate_positions && magnitude == that.magnitude && return_speed == that.return_speed && rotate_return_speed == that.rotate_return_speed && rotate_magnitude == that.rotate_magnitude && tracking_object == that.tracking_object && track_frame == that.track_frame && bottom_is_master == that.bottom_is_master && horizontal_only == that.horizontal_only && vertical_only == that.vertical_only; } void MotionConfig::copy_from(MotionConfig &that) { global_range_w = that.global_range_w; global_range_h = that.global_range_h; rotation_range = that.rotation_range; rotation_center = that.rotation_center; action_type = that.action_type; global = that.global; rotate = that.rotate; addtrackedframeoffset = that.addtrackedframeoffset; tracking_type = that.tracking_type; draw_vectors = that.draw_vectors; block_count = that.block_count; block_x = that.block_x; block_y = that.block_y; global_positions = that.global_positions; rotate_positions = that.rotate_positions; global_block_w = that.global_block_w; global_block_h = that.global_block_h; // rotation_block_w = that.rotation_block_w; // rotation_block_h = that.rotation_block_h; magnitude = that.magnitude; return_speed = that.return_speed; rotate_magnitude = that.rotate_magnitude; rotate_return_speed = that.rotate_return_speed; tracking_object = that.tracking_object; track_frame = that.track_frame; bottom_is_master = that.bottom_is_master; horizontal_only = that.horizontal_only; vertical_only = that.vertical_only; } void MotionConfig::interpolate(MotionConfig &prev, MotionConfig &next, int64_t prev_frame, int64_t next_frame, int64_t current_frame) { //double next_scale = (double)(current_frame - prev_frame) / (next_frame - prev_frame); //double prev_scale = (double)(next_frame - current_frame) / (next_frame - prev_frame); this->block_x = prev.block_x; this->block_y = prev.block_y; global_range_w = prev.global_range_w; global_range_h = prev.global_range_h; rotation_range = prev.rotation_range; rotation_center = prev.rotation_center; action_type = prev.action_type; global = prev.global; rotate = prev.rotate; addtrackedframeoffset = prev.addtrackedframeoffset; tracking_type = prev.tracking_type; draw_vectors = prev.draw_vectors; block_count = prev.block_count; global_positions = prev.global_positions; rotate_positions = prev.rotate_positions; global_block_w = prev.global_block_w; global_block_h = prev.global_block_h; // rotation_block_w = prev.rotation_block_w; // rotation_block_h = prev.rotation_block_h; magnitude = prev.magnitude; return_speed = prev.return_speed; rotate_magnitude = prev.rotate_magnitude; rotate_return_speed = prev.rotate_return_speed; tracking_object = prev.tracking_object; track_frame = prev.track_frame; bottom_is_master = prev.bottom_is_master; horizontal_only = prev.horizontal_only; vertical_only = prev.vertical_only; } MotionMain::MotionMain(PluginServer *server) : PluginVClient(server) { engine = 0; rotate_engine = 0; motion_rotate = 0; total_dx = 0; total_dy = 0; total_angle = 0; overlayer = 0; search_area = 0; search_size = 0; temp_frame = 0; previous_frame_number = -1; prev_global_ref = 0; current_global_ref = 0; global_target_src = 0; global_target_dst = 0; prev_rotate_ref = 0; current_rotate_ref = 0; rotate_target_src = 0; rotate_target_dst = 0; config.set_cpus(get_project_smp() + 1); } MotionMain::~MotionMain() { delete engine; delete overlayer; delete [] search_area; delete temp_frame; delete rotate_engine; delete motion_rotate; delete prev_global_ref; delete current_global_ref; delete global_target_src; delete global_target_dst; delete prev_rotate_ref; delete current_rotate_ref; delete rotate_target_src; delete rotate_target_dst; } const char* MotionMain::plugin_title() { return _("Motion"); } int MotionMain::is_realtime() { return 1; } int MotionMain::is_multichannel() { return 1; } NEW_WINDOW_MACRO(MotionMain, MotionWindow) LOAD_CONFIGURATION_MACRO(MotionMain, MotionConfig) void MotionMain::update_gui() { if(thread) { if(load_configuration()) { thread->window->lock_window("MotionMain::update_gui"); char string[BCTEXTLEN]; sprintf(string, "%d", config.global_positions); ((MotionWindow*)thread->window)->global_search_positions->set_text(string); sprintf(string, "%d", config.rotate_positions); ((MotionWindow*)thread->window)->rotation_search_positions->set_text(string); ((MotionWindow*)thread->window)->global_block_w->update(config.global_block_w); ((MotionWindow*)thread->window)->global_block_h->update(config.global_block_h); // ((MotionWindow*)thread->window)->rotation_block_w->update(config.rotation_block_w); // ((MotionWindow*)thread->window)->rotation_block_h->update(config.rotation_block_h); ((MotionWindow*)thread->window)->block_x->update(config.block_x); ((MotionWindow*)thread->window)->block_y->update(config.block_y); ((MotionWindow*)thread->window)->block_x_text->update((float)config.block_x); ((MotionWindow*)thread->window)->block_y_text->update((float)config.block_y); ((MotionWindow*)thread->window)->magnitude->update(config.magnitude); ((MotionWindow*)thread->window)->return_speed->update(config.return_speed); ((MotionWindow*)thread->window)->rotate_magnitude->update(config.rotate_magnitude); ((MotionWindow*)thread->window)->rotate_return_speed->update(config.rotate_return_speed); ((MotionWindow*)thread->window)->rotation_range->update(config.rotation_range); ((MotionWindow*)thread->window)->rotation_center->update(config.rotation_center); ((MotionWindow*)thread->window)->track_single->update(config.tracking_object == MotionScan::TRACK_SINGLE); ((MotionWindow*)thread->window)->track_frame_number->update(config.track_frame); ((MotionWindow*)thread->window)->track_previous->update(config.tracking_object == MotionScan::TRACK_PREVIOUS); ((MotionWindow*)thread->window)->previous_same->update(config.tracking_object == MotionScan::PREVIOUS_SAME_BLOCK); if(config.tracking_object != MotionScan::TRACK_SINGLE) ((MotionWindow*)thread->window)->track_frame_number->disable(); else ((MotionWindow*)thread->window)->track_frame_number->enable(); ((MotionWindow*)thread->window)->action_type->set_text( ActionType::to_text(config.action_type)); ((MotionWindow*)thread->window)->tracking_type->set_text( TrackingType::to_text(config.tracking_type)); ((MotionWindow*)thread->window)->track_direction->set_text( TrackDirection::to_text(config.horizontal_only, config.vertical_only)); ((MotionWindow*)thread->window)->master_layer->set_text( MasterLayer::to_text(config.bottom_is_master)); ((MotionWindow*)thread->window)->update_mode(); thread->window->unlock_window(); } } } void MotionMain::save_data(KeyFrame *keyframe) { FileXML output; // cause data to be stored directly in text output.set_shared_output(keyframe->get_data(), MESSAGESIZE); output.tag.set_title("MOTION"); output.tag.set_property("BLOCK_COUNT", config.block_count); output.tag.set_property("GLOBAL_POSITIONS", config.global_positions); output.tag.set_property("ROTATE_POSITIONS", config.rotate_positions); output.tag.set_property("GLOBAL_BLOCK_W", config.global_block_w); output.tag.set_property("GLOBAL_BLOCK_H", config.global_block_h); // output.tag.set_property("ROTATION_BLOCK_W", config.rotation_block_w); // output.tag.set_property("ROTATION_BLOCK_H", config.rotation_block_h); output.tag.set_property("BLOCK_X", config.block_x); output.tag.set_property("BLOCK_Y", config.block_y); output.tag.set_property("GLOBAL_RANGE_W", config.global_range_w); output.tag.set_property("GLOBAL_RANGE_H", config.global_range_h); output.tag.set_property("ROTATION_RANGE", config.rotation_range); output.tag.set_property("ROTATION_CENTER", config.rotation_center); output.tag.set_property("MAGNITUDE", config.magnitude); output.tag.set_property("RETURN_SPEED", config.return_speed); output.tag.set_property("ROTATE_MAGNITUDE", config.rotate_magnitude); output.tag.set_property("ROTATE_RETURN_SPEED", config.rotate_return_speed); output.tag.set_property("ACTION_TYPE", config.action_type); output.tag.set_property("GLOBAL", config.global); output.tag.set_property("ROTATE", config.rotate); output.tag.set_property("ADDTRACKEDFRAMEOFFSET", config.addtrackedframeoffset); output.tag.set_property("TRACKING_TYPE", config.tracking_type); output.tag.set_property("DRAW_VECTORS", config.draw_vectors); output.tag.set_property("TRACKING_OBJECT", config.tracking_object); output.tag.set_property("TRACK_FRAME", config.track_frame); output.tag.set_property("BOTTOM_IS_MASTER", config.bottom_is_master); output.tag.set_property("HORIZONTAL_ONLY", config.horizontal_only); output.tag.set_property("VERTICAL_ONLY", config.vertical_only); output.append_tag(); output.tag.set_title("/MOTION"); output.append_tag(); output.terminate_string(); } void MotionMain::read_data(KeyFrame *keyframe) { FileXML input; input.set_shared_input(keyframe->get_data(), strlen(keyframe->get_data())); int result = 0; while(!result) { result = input.read_tag(); if(!result) { if(input.tag.title_is("MOTION")) { config.block_count = input.tag.get_property("BLOCK_COUNT", config.block_count); config.global_positions = input.tag.get_property("GLOBAL_POSITIONS", config.global_positions); config.rotate_positions = input.tag.get_property("ROTATE_POSITIONS", config.rotate_positions); config.global_block_w = input.tag.get_property("GLOBAL_BLOCK_W", config.global_block_w); config.global_block_h = input.tag.get_property("GLOBAL_BLOCK_H", config.global_block_h); // config.rotation_block_w = input.tag.get_property("ROTATION_BLOCK_W", config.rotation_block_w); // config.rotation_block_h = input.tag.get_property("ROTATION_BLOCK_H", config.rotation_block_h); config.block_x = input.tag.get_property("BLOCK_X", config.block_x); config.block_y = input.tag.get_property("BLOCK_Y", config.block_y); config.global_range_w = input.tag.get_property("GLOBAL_RANGE_W", config.global_range_w); config.global_range_h = input.tag.get_property("GLOBAL_RANGE_H", config.global_range_h); config.rotation_range = input.tag.get_property("ROTATION_RANGE", config.rotation_range); config.rotation_center = input.tag.get_property("ROTATION_CENTER", config.rotation_center); config.magnitude = input.tag.get_property("MAGNITUDE", config.magnitude); config.return_speed = input.tag.get_property("RETURN_SPEED", config.return_speed); config.rotate_magnitude = input.tag.get_property("ROTATE_MAGNITUDE", config.rotate_magnitude); config.rotate_return_speed = input.tag.get_property("ROTATE_RETURN_SPEED", config.rotate_return_speed); config.action_type = input.tag.get_property("ACTION_TYPE", config.action_type); config.global = input.tag.get_property("GLOBAL", config.global); config.rotate = input.tag.get_property("ROTATE", config.rotate); config.addtrackedframeoffset = input.tag.get_property("ADDTRACKEDFRAMEOFFSET", config.addtrackedframeoffset); config.tracking_type = input.tag.get_property("TRACKING_TYPE", config.tracking_type); config.draw_vectors = input.tag.get_property("DRAW_VECTORS", config.draw_vectors); config.tracking_object = input.tag.get_property("TRACKING_OBJECT", config.tracking_object); config.track_frame = input.tag.get_property("TRACK_FRAME", config.track_frame); config.bottom_is_master = input.tag.get_property("BOTTOM_IS_MASTER", config.bottom_is_master); config.horizontal_only = input.tag.get_property("HORIZONTAL_ONLY", config.horizontal_only); config.vertical_only = input.tag.get_property("VERTICAL_ONLY", config.vertical_only); } } } config.boundaries(); } void MotionMain::allocate_temp(int w, int h, int color_model) { if(temp_frame && (temp_frame->get_w() != w || temp_frame->get_h() != h)) { delete temp_frame; temp_frame = 0; } if(!temp_frame) temp_frame = new VFrame(w, h, color_model); } void MotionMain::process_global() { if(!engine) engine = new MotionScan(PluginClient::get_project_smp() + 1, PluginClient::get_project_smp() + 1); // Determine if frames changed engine->scan_frame(current_global_ref, prev_global_ref, config.global_range_w, config.global_range_h, config.global_block_w, config.global_block_h, config.block_x, config.block_y, config.tracking_object, config.tracking_type, config.action_type, config.horizontal_only, config.vertical_only, get_source_position(), config.global_positions, total_dx, total_dy, 0, 0); current_dx = engine->dx_result; current_dy = engine->dy_result; // Add current motion vector to accumulation vector. if(config.tracking_object != MotionScan::TRACK_SINGLE) { // Retract over time total_dx = (int64_t)total_dx * (100 - config.return_speed) / 100; total_dy = (int64_t)total_dy * (100 - config.return_speed) / 100; total_dx += engine->dx_result; total_dy += engine->dy_result; // printf("MotionMain::process_global total_dx=%d engine->dx_result=%d\n", // total_dx, // engine->dx_result); } else // Make accumulation vector current { total_dx = engine->dx_result; total_dy = engine->dy_result; } // Clamp accumulation vector if(config.magnitude < 100) { //int block_w = (int64_t)config.global_block_w * // current_global_ref->get_w() / 100; //int block_h = (int64_t)config.global_block_h * // current_global_ref->get_h() / 100; int block_x_orig = (int64_t)(config.block_x * current_global_ref->get_w() / 100); int block_y_orig = (int64_t)(config.block_y * current_global_ref->get_h() / 100); int max_block_x = (int64_t)(current_global_ref->get_w() - block_x_orig) * OVERSAMPLE * config.magnitude / 100; int max_block_y = (int64_t)(current_global_ref->get_h() - block_y_orig) * OVERSAMPLE * config.magnitude / 100; int min_block_x = (int64_t)-block_x_orig * OVERSAMPLE * config.magnitude / 100; int min_block_y = (int64_t)-block_y_orig * OVERSAMPLE * config.magnitude / 100; CLAMP(total_dx, min_block_x, max_block_x); CLAMP(total_dy, min_block_y, max_block_y); } #ifdef DEBUG printf("MotionMain::process_global 2 total_dx=%.02f total_dy=%.02f\n", (float)total_dx / OVERSAMPLE, (float)total_dy / OVERSAMPLE); #endif if(config.tracking_object != MotionScan::TRACK_SINGLE && !config.rotate) { // Transfer current reference frame to previous reference frame and update // counter. Must wait for rotate to compare. prev_global_ref->copy_from(current_global_ref); previous_frame_number = get_source_position(); } // Decide what to do with target based on requested operation int interpolation = NEAREST_NEIGHBOR; float dx = 0.; float dy = 0.; switch(config.action_type) { case MotionScan::NOTHING: global_target_dst->copy_from(global_target_src); break; case MotionScan::TRACK_PIXEL: interpolation = NEAREST_NEIGHBOR; dx = (int)(total_dx / OVERSAMPLE); dy = (int)(total_dy / OVERSAMPLE); break; case MotionScan::STABILIZE_PIXEL: interpolation = NEAREST_NEIGHBOR; dx = -(int)(total_dx / OVERSAMPLE); dy = -(int)(total_dy / OVERSAMPLE); break; break; case MotionScan::TRACK: interpolation = CUBIC_LINEAR; dx = (float)total_dx / OVERSAMPLE; dy = (float)total_dy / OVERSAMPLE; break; case MotionScan::STABILIZE: interpolation = CUBIC_LINEAR; dx = -(float)total_dx / OVERSAMPLE; dy = -(float)total_dy / OVERSAMPLE; break; } if(config.action_type != MotionScan::NOTHING) { if(!overlayer) overlayer = new OverlayFrame(PluginClient::get_project_smp() + 1); global_target_dst->clear_frame(); overlayer->overlay(global_target_dst, global_target_src, 0, 0, global_target_src->get_w(), global_target_src->get_h(), dx, dy, (float)global_target_src->get_w() + dx, (float)global_target_src->get_h() + dy, 1, TRANSFER_REPLACE, interpolation); } } void MotionMain::process_rotation() { int block_x; int block_y; // Convert the previous global reference into the previous rotation reference. // Convert global target destination into rotation target source. if(config.global) { if(!overlayer) overlayer = new OverlayFrame(PluginClient::get_project_smp() + 1); float dx; float dy; if(config.tracking_object == MotionScan::TRACK_SINGLE) { dx = (float)total_dx / OVERSAMPLE; dy = (float)total_dy / OVERSAMPLE; } else { dx = (float)current_dx / OVERSAMPLE; dy = (float)current_dy / OVERSAMPLE; } prev_rotate_ref->clear_frame(); overlayer->overlay(prev_rotate_ref, prev_global_ref, 0, 0, prev_global_ref->get_w(), prev_global_ref->get_h(), dx, dy, (float)prev_global_ref->get_w() + dx, (float)prev_global_ref->get_h() + dy, 1, TRANSFER_REPLACE, CUBIC_LINEAR); // Pivot is destination global position block_x = (int)(prev_rotate_ref->get_w() * config.block_x / 100 + (float)total_dx / OVERSAMPLE); block_y = (int)(prev_rotate_ref->get_h() * config.block_y / 100 + (float)total_dy / OVERSAMPLE); // Use the global target output as the rotation target input rotate_target_src->copy_from(global_target_dst); // Transfer current reference frame to previous reference frame for global. if(config.tracking_object != MotionScan::TRACK_SINGLE) { prev_global_ref->copy_from(current_global_ref); previous_frame_number = get_source_position(); } } else { // Pivot is fixed block_x = (int)(prev_rotate_ref->get_w() * config.block_x / 100); block_y = (int)(prev_rotate_ref->get_h() * config.block_y / 100); } // Get rotation if(!motion_rotate) motion_rotate = new RotateScan(this, get_project_smp() + 1, get_project_smp() + 1); current_angle = motion_rotate->scan_frame(prev_rotate_ref, current_rotate_ref, block_x, block_y); // Add current rotation to accumulation if(config.tracking_object != MotionScan::TRACK_SINGLE) { // Retract over time total_angle = total_angle * (100 - config.rotate_return_speed) / 100; // Accumulate current rotation total_angle += current_angle; // Clamp rotation accumulation if(config.rotate_magnitude < 90) { CLAMP(total_angle, -config.rotate_magnitude, config.rotate_magnitude); } if(!config.global) { // Transfer current reference frame to previous reference frame and update // counter. prev_rotate_ref->copy_from(current_rotate_ref); previous_frame_number = get_source_position(); } } else { total_angle = current_angle; } #ifdef DEBUG printf("MotionMain::process_rotation total_angle=%f\n", total_angle); #endif // Calculate rotation parameters based on requested operation float angle = 0.; switch(config.action_type) { case MotionScan::NOTHING: rotate_target_dst->copy_from(rotate_target_src); break; case MotionScan::TRACK: case MotionScan::TRACK_PIXEL: angle = total_angle; break; case MotionScan::STABILIZE: case MotionScan::STABILIZE_PIXEL: angle = -total_angle; break; } if(config.action_type != MotionScan::NOTHING) { if(!rotate_engine) rotate_engine = new AffineEngine(PluginClient::get_project_smp() + 1, PluginClient::get_project_smp() + 1); rotate_target_dst->clear_frame(); // Determine pivot based on a number of factors. switch(config.action_type) { case MotionScan::TRACK: case MotionScan::TRACK_PIXEL: // Use destination of global tracking. // rotate_engine->set_pivot(block_x, block_y); rotate_engine->set_in_pivot(block_x, block_y); rotate_engine->set_out_pivot(block_x, block_y); break; case MotionScan::STABILIZE: case MotionScan::STABILIZE_PIXEL: if(config.global) { // Use origin of global stabilize operation // rotate_engine->set_pivot((int)(rotate_target_dst->get_w() * // config.block_x / // 100), // (int)(rotate_target_dst->get_h() * // config.block_y / // 100)); rotate_engine->set_in_pivot((int)(rotate_target_dst->get_w() * config.block_x / 100), (int)(rotate_target_dst->get_h() * config.block_y / 100)); rotate_engine->set_out_pivot((int)(rotate_target_dst->get_w() * config.block_x / 100), (int)(rotate_target_dst->get_h() * config.block_y / 100)); } else { // Use origin // rotate_engine->set_pivot(block_x, block_y); rotate_engine->set_in_pivot(block_x, block_y); rotate_engine->set_out_pivot(block_x, block_y); } break; } rotate_engine->rotate(rotate_target_dst, rotate_target_src, angle); // overlayer->overlay(rotate_target_dst, // prev_rotate_ref, // 0, // 0, // prev_rotate_ref->get_w(), // prev_rotate_ref->get_h(), // 0, // 0, // prev_rotate_ref->get_w(), // prev_rotate_ref->get_h(), // 1, // TRANSFER_NORMAL, // CUBIC_LINEAR); // overlayer->overlay(rotate_target_dst, // current_rotate_ref, // 0, // 0, // prev_rotate_ref->get_w(), // prev_rotate_ref->get_h(), // 0, // 0, // prev_rotate_ref->get_w(), // prev_rotate_ref->get_h(), // 1, // TRANSFER_NORMAL, // CUBIC_LINEAR); } } int MotionMain::process_buffer(VFrame **frame, int64_t start_position, double frame_rate) { int need_reconfigure = load_configuration(); int color_model = frame[0]->get_color_model(); w = frame[0]->get_w(); h = frame[0]->get_h(); #ifdef DEBUG printf("MotionMain::process_buffer %d start_position=%lld\n", __LINE__, start_position); #endif // Calculate the source and destination pointers for each of the operations. // Get the layer to track motion in. reference_layer = config.bottom_is_master ? PluginClient::total_in_buffers - 1 : 0; // Get the layer to apply motion in. target_layer = config.bottom_is_master ? 0 : PluginClient::total_in_buffers - 1; output_frame = frame[target_layer]; // Get the position of previous reference frame. int64_t actual_previous_number; // Skip if match frame not available int skip_current = 0; if(config.tracking_object == MotionScan::TRACK_SINGLE) { actual_previous_number = config.track_frame; if(get_direction() == PLAY_REVERSE) actual_previous_number++; if(actual_previous_number == start_position) skip_current = 1; } else { actual_previous_number = start_position; if(get_direction() == PLAY_FORWARD) { actual_previous_number--; if(actual_previous_number < get_source_start()) skip_current = 1; else { KeyFrame *keyframe = get_prev_keyframe(start_position, 1); if(keyframe->position > 0 && actual_previous_number < keyframe->position) skip_current = 1; } } else { actual_previous_number++; if(actual_previous_number >= get_source_start() + get_total_len()) skip_current = 1; else { KeyFrame *keyframe = get_next_keyframe(start_position, 1); if(keyframe->position > 0 && actual_previous_number >= keyframe->position) skip_current = 1; } } // Only count motion since last keyframe } if(!config.global && !config.rotate) skip_current = 1; // printf("process_realtime %d %lld %lld\n", // skip_current, // previous_frame_number, // actual_previous_number); // Load match frame and reset vectors int need_reload = !skip_current && (previous_frame_number != actual_previous_number || need_reconfigure); if(need_reload) { total_dx = 0; total_dy = 0; total_angle = 0; previous_frame_number = actual_previous_number; } if(skip_current) { total_dx = 0; total_dy = 0; current_dx = 0; current_dy = 0; total_angle = 0; current_angle = 0; } // Get the global pointers. Here we walk through the sequence of events. if(config.global) { // Assume global only. Global reads previous frame and compares // with current frame to get the current translation. // The center of the search area is fixed in compensate mode or // the user value + the accumulation vector in track mode. if(!prev_global_ref) prev_global_ref = new VFrame(w, h, color_model); if(!current_global_ref) current_global_ref = new VFrame(w, h, color_model); // Global loads the current target frame into the src and // writes it to the dst frame with desired translation. if(!global_target_src) global_target_src = new VFrame(w, h, color_model); if(!global_target_dst) global_target_dst = new VFrame(w, h, color_model); // Load the global frames if(need_reload) { read_frame(prev_global_ref, reference_layer, previous_frame_number, frame_rate, 0); } read_frame(current_global_ref, reference_layer, start_position, frame_rate, 0); read_frame(global_target_src, target_layer, start_position, frame_rate, 0); // Global followed by rotate if(config.rotate) { // Must translate the previous global reference by the current global // accumulation vector to match the current global reference. // The center of the search area is always the user value + the accumulation // vector. if(!prev_rotate_ref) prev_rotate_ref = new VFrame(w, h, color_model); // The current global reference is the current rotation reference. if(!current_rotate_ref) current_rotate_ref = new VFrame(w, h, color_model); current_rotate_ref->copy_from(current_global_ref); // The global target destination is copied to the rotation target source // then written to the rotation output with rotation. // The pivot for the rotation is the center of the search area // if we're tracking. // The pivot is fixed to the user position if we're compensating. if(!rotate_target_src) rotate_target_src = new VFrame(w, h, color_model); if(!rotate_target_dst) rotate_target_dst = new VFrame(w, h, color_model); } } else // Rotation only if(config.rotate) { // Rotation reads the previous reference frame and compares it with current // reference frame. if(!prev_rotate_ref) prev_rotate_ref = new VFrame(w, h, color_model); if(!current_rotate_ref) current_rotate_ref = new VFrame(w, h, color_model); // Rotation loads target frame to temporary, rotates it, and writes it to the // target frame. The pivot is always fixed. if(!rotate_target_src) rotate_target_src = new VFrame(w, h, color_model); if(!rotate_target_dst) rotate_target_dst = new VFrame(w, h, color_model); // Load the rotate frames if(need_reload) { read_frame(prev_rotate_ref, reference_layer, previous_frame_number, frame_rate, 0); } read_frame(current_rotate_ref, reference_layer, start_position, frame_rate, 0); read_frame(rotate_target_src, target_layer, start_position, frame_rate, 0); } if(!skip_current) { // Get position change from previous frame to current frame if(config.global) process_global(); // Get rotation change from previous frame to current frame if(config.rotate) process_rotation(); //frame[target_layer]->copy_from(prev_rotate_ref); //frame[target_layer]->copy_from(current_rotate_ref); } // Transfer the relevant target frame to the output if(!skip_current) { if(config.rotate) { frame[target_layer]->copy_from(rotate_target_dst); } else { frame[target_layer]->copy_from(global_target_dst); } } else // Read the target destination directly { read_frame(frame[target_layer], target_layer, start_position, frame_rate, 0); } if(config.draw_vectors) { draw_vectors(frame[target_layer]); } #ifdef DEBUG printf("MotionMain::process_buffer %d\n", __LINE__); #endif return 0; } void MotionMain::draw_vectors(VFrame *frame) { int w = frame->get_w(); int h = frame->get_h(); int global_x1, global_y1; int global_x2, global_y2; int block_x, block_y; int block_w, block_h; int block_x1, block_y1; int block_x2, block_y2; int block_x3, block_y3; int block_x4, block_y4; int search_w, search_h; int search_x1, search_y1; int search_x2, search_y2; if(config.global) { // Get vector // Start of vector is center of previous block. // End of vector is total accumulation. if(config.tracking_object == MotionScan::TRACK_SINGLE) { global_x1 = (int64_t)(config.block_x * w / 100); global_y1 = (int64_t)(config.block_y * h / 100); global_x2 = global_x1 + total_dx / OVERSAMPLE; global_y2 = global_y1 + total_dy / OVERSAMPLE; //printf("MotionMain::draw_vectors %d %d %d %d %d %d\n", total_dx, total_dy, global_x1, global_y1, global_x2, global_y2); } else // Start of vector is center of previous block. // End of vector is current change. if(config.tracking_object == MotionScan::PREVIOUS_SAME_BLOCK) { global_x1 = (int64_t)(config.block_x * w / 100); global_y1 = (int64_t)(config.block_y * h / 100); global_x2 = global_x1 + current_dx / OVERSAMPLE; global_y2 = global_y1 + current_dy / OVERSAMPLE; } else { global_x1 = (int64_t)(config.block_x * w / 100 + (total_dx - current_dx) / OVERSAMPLE); global_y1 = (int64_t)(config.block_y * h / 100 + (total_dy - current_dy) / OVERSAMPLE); global_x2 = (int64_t)(config.block_x * w / 100 + total_dx / OVERSAMPLE); global_y2 = (int64_t)(config.block_y * h / 100 + total_dy / OVERSAMPLE); } block_x = global_x1; block_y = global_y1; block_w = config.global_block_w * w / 100; block_h = config.global_block_h * h / 100; block_x1 = block_x - block_w / 2; block_y1 = block_y - block_h / 2; block_x2 = block_x + block_w / 2; block_y2 = block_y + block_h / 2; search_w = config.global_range_w * w / 100; search_h = config.global_range_h * h / 100; search_x1 = block_x1 - search_w / 2; search_y1 = block_y1 - search_h / 2; search_x2 = block_x2 + search_w / 2; search_y2 = block_y2 + search_h / 2; // printf("MotionMain::draw_vectors %d %d %d %d %d %d %d %d %d %d %d %d\n", // global_x1, // global_y1, // block_w, // block_h, // block_x1, // block_y1, // block_x2, // block_y2, // search_x1, // search_y1, // search_x2, // search_y2); MotionScan::clamp_scan(w, h, &block_x1, &block_y1, &block_x2, &block_y2, &search_x1, &search_y1, &search_x2, &search_y2, 1); // Vector draw_arrow(frame, global_x1, global_y1, global_x2, global_y2); // Macroblock draw_line(frame, block_x1, block_y1, block_x2, block_y1); draw_line(frame, block_x2, block_y1, block_x2, block_y2); draw_line(frame, block_x2, block_y2, block_x1, block_y2); draw_line(frame, block_x1, block_y2, block_x1, block_y1); // Search area draw_line(frame, search_x1, search_y1, search_x2, search_y1); draw_line(frame, search_x2, search_y1, search_x2, search_y2); draw_line(frame, search_x2, search_y2, search_x1, search_y2); draw_line(frame, search_x1, search_y2, search_x1, search_y1); // Block should be endpoint of motion if(config.rotate) { block_x = global_x2; block_y = global_y2; } } else { block_x = (int64_t)(config.block_x * w / 100); block_y = (int64_t)(config.block_y * h / 100); } block_w = config.global_block_w * w / 100; block_h = config.global_block_h * h / 100; if(config.rotate) { float angle = total_angle * 2 * M_PI / 360; double base_angle1 = atan((float)block_h / block_w); double base_angle2 = atan((float)block_w / block_h); double target_angle1 = base_angle1 + angle; double target_angle2 = base_angle2 + angle; double radius = sqrt(block_w * block_w + block_h * block_h) / 2; block_x1 = (int)(block_x - cos(target_angle1) * radius); block_y1 = (int)(block_y - sin(target_angle1) * radius); block_x2 = (int)(block_x + sin(target_angle2) * radius); block_y2 = (int)(block_y - cos(target_angle2) * radius); block_x3 = (int)(block_x - sin(target_angle2) * radius); block_y3 = (int)(block_y + cos(target_angle2) * radius); block_x4 = (int)(block_x + cos(target_angle1) * radius); block_y4 = (int)(block_y + sin(target_angle1) * radius); draw_line(frame, block_x1, block_y1, block_x2, block_y2); draw_line(frame, block_x2, block_y2, block_x4, block_y4); draw_line(frame, block_x4, block_y4, block_x3, block_y3); draw_line(frame, block_x3, block_y3, block_x1, block_y1); // Center if(!config.global) { draw_line(frame, block_x, block_y - 5, block_x, block_y + 6); draw_line(frame, block_x - 5, block_y, block_x + 6, block_y); } } } void MotionMain::draw_pixel(VFrame *frame, int x, int y) { if(!(x >= 0 && y >= 0 && x < frame->get_w() && y < frame->get_h())) return; #define DRAW_PIXEL(x, y, components, do_yuv, max, type) \ { \ type **rows = (type**)frame->get_rows(); \ rows[y][x * components] = max - rows[y][x * components]; \ if(!do_yuv) \ { \ rows[y][x * components + 1] = max - rows[y][x * components + 1]; \ rows[y][x * components + 2] = max - rows[y][x * components + 2]; \ } \ else \ { \ rows[y][x * components + 1] = (max / 2 + 1) - rows[y][x * components + 1]; \ rows[y][x * components + 2] = (max / 2 + 1) - rows[y][x * components + 2]; \ } \ if(components == 4) \ rows[y][x * components + 3] = max; \ } switch(frame->get_color_model()) { case BC_RGB888: DRAW_PIXEL(x, y, 3, 0, 0xff, unsigned char); break; case BC_RGBA8888: DRAW_PIXEL(x, y, 4, 0, 0xff, unsigned char); break; case BC_RGB_FLOAT: DRAW_PIXEL(x, y, 3, 0, 1.0, float); break; case BC_RGBA_FLOAT: DRAW_PIXEL(x, y, 4, 0, 1.0, float); break; case BC_YUV888: DRAW_PIXEL(x, y, 3, 1, 0xff, unsigned char); break; case BC_YUVA8888: DRAW_PIXEL(x, y, 4, 1, 0xff, unsigned char); break; case BC_RGB161616: DRAW_PIXEL(x, y, 3, 0, 0xffff, uint16_t); break; case BC_YUV161616: DRAW_PIXEL(x, y, 3, 1, 0xffff, uint16_t); break; case BC_RGBA16161616: DRAW_PIXEL(x, y, 4, 0, 0xffff, uint16_t); break; case BC_YUVA16161616: DRAW_PIXEL(x, y, 4, 1, 0xffff, uint16_t); break; } } void MotionMain::draw_line(VFrame *frame, int x1, int y1, int x2, int y2) { int w = labs(x2 - x1); int h = labs(y2 - y1); //printf("MotionMain::draw_line 1 %d %d %d %d\n", x1, y1, x2, y2); if(!w && !h) { draw_pixel(frame, x1, y1); } else if(w > h) { // Flip coordinates so x1 < x2 if(x2 < x1) { y2 ^= y1; y1 ^= y2; y2 ^= y1; x1 ^= x2; x2 ^= x1; x1 ^= x2; } int numerator = y2 - y1; int denominator = x2 - x1; for(int i = x1; i < x2; i++) { int y = y1 + (int64_t)(i - x1) * (int64_t)numerator / (int64_t)denominator; draw_pixel(frame, i, y); } } else { // Flip coordinates so y1 < y2 if(y2 < y1) { y2 ^= y1; y1 ^= y2; y2 ^= y1; x1 ^= x2; x2 ^= x1; x1 ^= x2; } int numerator = x2 - x1; int denominator = y2 - y1; for(int i = y1; i < y2; i++) { int x = x1 + (int64_t)(i - y1) * (int64_t)numerator / (int64_t)denominator; draw_pixel(frame, x, i); } } //printf("MotionMain::draw_line 2\n"); } #define ARROW_SIZE 10 void MotionMain::draw_arrow(VFrame *frame, int x1, int y1, int x2, int y2) { double angle = atan((float)(y2 - y1) / (float)(x2 - x1)); double angle1 = angle + (float)145 / 360 * 2 * 3.14159265; double angle2 = angle - (float)145 / 360 * 2 * 3.14159265; int x3; int y3; int x4; int y4; if(x2 < x1) { x3 = x2 - (int)(ARROW_SIZE * cos(angle1)); y3 = y2 - (int)(ARROW_SIZE * sin(angle1)); x4 = x2 - (int)(ARROW_SIZE * cos(angle2)); y4 = y2 - (int)(ARROW_SIZE * sin(angle2)); } else { x3 = x2 + (int)(ARROW_SIZE * cos(angle1)); y3 = y2 + (int)(ARROW_SIZE * sin(angle1)); x4 = x2 + (int)(ARROW_SIZE * cos(angle2)); y4 = y2 + (int)(ARROW_SIZE * sin(angle2)); } // Main vector draw_line(frame, x1, y1, x2, y2); // draw_line(frame, x1, y1 + 1, x2, y2 + 1); // Arrow line if(abs(y2 - y1) || abs(x2 - x1)) draw_line(frame, x2, y2, x3, y3); // draw_line(frame, x2, y2 + 1, x3, y3 + 1); // Arrow line if(abs(y2 - y1) || abs(x2 - x1)) draw_line(frame, x2, y2, x4, y4); // draw_line(frame, x2, y2 + 1, x4, y4 + 1); } RotateScanPackage::RotateScanPackage() { } RotateScanUnit::RotateScanUnit(RotateScan *server, MotionMain *plugin) : LoadClient(server) { this->server = server; this->plugin = plugin; rotater = 0; temp = 0; } RotateScanUnit::~RotateScanUnit() { delete rotater; delete temp; } void RotateScanUnit::process_package(LoadPackage *package) { if(server->skip) return; RotateScanPackage *pkg = (RotateScanPackage*)package; if((pkg->difference = server->get_cache(pkg->angle)) < 0) { //printf("RotateScanUnit::process_package %d\n", __LINE__); int color_model = server->previous_frame->get_color_model(); int pixel_size = BC_CModels::calculate_pixelsize(color_model); int row_bytes = server->previous_frame->get_bytes_per_line(); if(!rotater) rotater = new AffineEngine(1, 1); if(!temp) temp = new VFrame(0, -1, server->previous_frame->get_w(), server->previous_frame->get_h(), color_model, -1); //printf("RotateScanUnit::process_package %d\n", __LINE__); // Rotate original block size // rotater->set_viewport(server->block_x1, // server->block_y1, // server->block_x2 - server->block_x1, // server->block_y2 - server->block_y1); rotater->set_in_viewport(server->block_x1, server->block_y1, server->block_x2 - server->block_x1, server->block_y2 - server->block_y1); rotater->set_out_viewport(server->block_x1, server->block_y1, server->block_x2 - server->block_x1, server->block_y2 - server->block_y1); // rotater->set_pivot(server->block_x, server->block_y); rotater->set_in_pivot(server->block_x, server->block_y); rotater->set_out_pivot(server->block_x, server->block_y); //printf("RotateScanUnit::process_package %d\n", __LINE__); rotater->rotate(temp, server->previous_frame, pkg->angle); // Scan reduced block size //plugin->output_frame->copy_from(server->current_frame); //plugin->output_frame->copy_from(temp); // printf("RotateScanUnit::process_package %d %d %d %d %d\n", // __LINE__, // server->scan_x, // server->scan_y, // server->scan_w, // server->scan_h); // Clamp coordinates int x1 = server->scan_x; int y1 = server->scan_y; int x2 = x1 + server->scan_w; int y2 = y1 + server->scan_h; x2 = MIN(temp->get_w(), x2); y2 = MIN(temp->get_h(), y2); x2 = MIN(server->current_frame->get_w(), x2); y2 = MIN(server->current_frame->get_h(), y2); x1 = MAX(0, x1); y1 = MAX(0, y1); if(x2 > x1 && y2 > y1) { pkg->difference = MotionScan::abs_diff( temp->get_rows()[y1] + x1 * pixel_size, server->current_frame->get_rows()[y1] + x1 * pixel_size, row_bytes, x2 - x1, y2 - y1, color_model); //printf("RotateScanUnit::process_package %d\n", __LINE__); server->put_cache(pkg->angle, pkg->difference); } #if 0 VFrame png(x2-x1, y2-y1, BC_RGB888, -1); png.transfer_from(temp, 0, x1, y1, x2-x1, y2-y1); char fn[64]; sprintf(fn,"%s%f.png","/tmp/temp",pkg->angle); png.write_png(fn); png.transfer_from(server->current_frame, 0, x1, y1, x2-x1, y2-y1); sprintf(fn,"%s%f.png","/tmp/curr",pkg->angle); png.write_png(fn); printf("RotateScanUnit::process_package 10 x=%d y=%d w=%d h=%d block_x=%d block_y=%d angle=%f scan_w=%d scan_h=%d diff=%jd\n", server->block_x1, server->block_y1, server->block_x2 - server->block_x1, server->block_y2 - server->block_y1, server->block_x, server->block_y, pkg->angle, server->scan_w, server->scan_h, pkg->difference); #endif } } RotateScan::RotateScan(MotionMain *plugin, int total_clients, int total_packages) : LoadServer( //1, 1 total_clients, total_packages ) { this->plugin = plugin; cache_lock = new Mutex("RotateScan::cache_lock"); } RotateScan::~RotateScan() { delete cache_lock; } void RotateScan::init_packages() { for(int i = 0; i < get_total_packages(); i++) { RotateScanPackage *pkg = (RotateScanPackage*)get_package(i); pkg->angle = i * (scan_angle2 - scan_angle1) / (total_steps - 1) + scan_angle1; } } LoadClient* RotateScan::new_client() { return new RotateScanUnit(this, plugin); } LoadPackage* RotateScan::new_package() { return new RotateScanPackage; } float RotateScan::scan_frame(VFrame *previous_frame, VFrame *current_frame, int block_x, int block_y) { skip = 0; this->block_x = block_x; this->block_y = block_y; //printf("RotateScan::scan_frame %d\n", __LINE__); switch(plugin->config.tracking_type) { case MotionScan::NO_CALCULATE: result = plugin->config.rotation_center; skip = 1; break; case MotionScan::LOAD: { char string[BCTEXTLEN]; sprintf(string, "%s%06jd", ROTATION_FILE, plugin->get_source_position()); FILE *input = fopen(string, "r"); if(input) { fscanf(input, "%f", &result); fclose(input); skip = 1; } else { perror("RotateScan::scan_frame LOAD"); } break; } } this->previous_frame = previous_frame; this->current_frame = current_frame; int w = current_frame->get_w(); int h = current_frame->get_h(); int block_w = w * plugin->config.global_block_w / 100; int block_h = h * plugin->config.global_block_h / 100; if(this->block_x - block_w / 2 < 0) block_w = this->block_x * 2; if(this->block_y - block_h / 2 < 0) block_h = this->block_y * 2; if(this->block_x + block_w / 2 > w) block_w = (w - this->block_x) * 2; if(this->block_y + block_h / 2 > h) block_h = (h - this->block_y) * 2; block_x1 = this->block_x - block_w / 2; block_x2 = this->block_x + block_w / 2; block_y1 = this->block_y - block_h / 2; block_y2 = this->block_y + block_h / 2; // Calculate the maximum area available to scan after rotation. // Must be calculated from the starting range because of cache. // Get coords of rectangle after rotation. double center_x = this->block_x; double center_y = this->block_y; double max_angle = plugin->config.rotation_range; double base_angle1 = atan((float)block_h / block_w); double base_angle2 = atan((float)block_w / block_h); double target_angle1 = base_angle1 + max_angle * 2 * M_PI / 360; double target_angle2 = base_angle2 + max_angle * 2 * M_PI / 360; double radius = sqrt(block_w * block_w + block_h * block_h) / 2; double x1 = center_x - cos(target_angle1) * radius; double y1 = center_y - sin(target_angle1) * radius; double x2 = center_x + sin(target_angle2) * radius; double y2 = center_y - cos(target_angle2) * radius; double x3 = center_x - sin(target_angle2) * radius; double y3 = center_y + cos(target_angle2) * radius; // Track top edge to find greatest area. double max_area1 = 0; //double max_x1 = 0; double max_y1 = 0; for(double x = x1; x < x2; x++) { double y = y1 + (y2 - y1) * (x - x1) / (x2 - x1); if(x >= center_x && x < block_x2 && y >= block_y1 && y < center_y) { double area = fabs(x - center_x) * fabs(y - center_y); if(area > max_area1) { max_area1 = area; //max_x1 = x; max_y1 = y; } } } // Track left edge to find greatest area. double max_area2 = 0; double max_x2 = 0; //double max_y2 = 0; for(double y = y1; y < y3; y++) { double x = x1 + (x3 - x1) * (y - y1) / (y3 - y1); if(x >= block_x1 && x < center_x && y >= block_y1 && y < center_y) { double area = fabs(x - center_x) * fabs(y - center_y); if(area > max_area2) { max_area2 = area; max_x2 = x; //max_y2 = y; } } } double max_x, max_y; max_x = max_x2; max_y = max_y1; // Get reduced scan coords scan_w = (int)(fabs(max_x - center_x) * 2); scan_h = (int)(fabs(max_y - center_y) * 2); scan_x = (int)(center_x - scan_w / 2); scan_y = (int)(center_y - scan_h / 2); // printf("RotateScan::scan_frame center=%d,%d scan=%d,%d %dx%d\n", // this->block_x, this->block_y, scan_x, scan_y, scan_w, scan_h); // printf(" angle_range=%f block= %d,%d,%d,%d\n", max_angle, block_x1, block_y1, block_x2, block_y2); // Determine min angle from size of block double angle1 = atan((double)block_h / block_w); double angle2 = atan((double)(block_h - 1) / (block_w + 1)); double min_angle = fabs(angle2 - angle1) / OVERSAMPLE; min_angle = MAX(min_angle, MIN_ANGLE); //printf("RotateScan::scan_frame %d min_angle=%f\n", __LINE__, min_angle * 360 / 2 / M_PI); cache.remove_all_objects(); if(!skip) { if(previous_frame->data_matches(current_frame)) { //printf("RotateScan::scan_frame: frames match. Skipping.\n"); result = plugin->config.rotation_center; skip = 1; } } if(!skip) { // Initial search range float angle_range = max_angle; result = plugin->config.rotation_center; total_steps = plugin->config.rotate_positions; while(angle_range >= min_angle * total_steps) { scan_angle1 = result - angle_range; scan_angle2 = result + angle_range; set_package_count(total_steps); //set_package_count(1); process_packages(); int64_t min_difference = -1; for(int i = 0; i < get_total_packages(); i++) { RotateScanPackage *pkg = (RotateScanPackage*)get_package(i); if(pkg->difference < min_difference || min_difference == -1) { min_difference = pkg->difference; result = pkg->angle; } //break; } angle_range /= 2; //break; } } //printf("RotateScan::scan_frame %d\n", __LINE__); if(!skip && plugin->config.tracking_type == MotionScan::SAVE) { char string[BCTEXTLEN]; sprintf(string, "%s%06jd", ROTATION_FILE, plugin->get_source_position()); FILE *output = fopen(string, "w"); if(output) { fprintf(output, "%f\n", result); fclose(output); } else { perror("RotateScan::scan_frame SAVE"); } } //printf("RotateScan::scan_frame %d angle=%f\n", __LINE__, result); return result; } int64_t RotateScan::get_cache(float angle) { int64_t result = -1; cache_lock->lock("RotateScan::get_cache"); for(int i = 0; i < cache.total; i++) { RotateScanCache *ptr = cache.values[i]; if(fabs(ptr->angle - angle) <= MIN_ANGLE) { result = ptr->difference; break; } } cache_lock->unlock(); return result; } void RotateScan::put_cache(float angle, int64_t difference) { RotateScanCache *ptr = new RotateScanCache(angle, difference); cache_lock->lock("RotateScan::put_cache"); cache.append(ptr); cache_lock->unlock(); } RotateScanCache::RotateScanCache(float angle, int64_t difference) { this->angle = angle; this->difference = difference; }