/* * CINELERRA * Copyright (C) 2008 Adam Williams * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "bcsignals.h" #include "condition.h" #include "clip.h" #include "maskauto.h" #include "maskautos.h" #include "maskengine.h" #include "mutex.h" #include "transportque.inc" #include "vframe.h" #include #include #include MaskPackage::MaskPackage() { } MaskPackage::~MaskPackage() { } MaskUnit::MaskUnit(MaskEngine *engine) : LoadClient(engine) { this->engine = engine; this->temp = 0; } MaskUnit::~MaskUnit() { if( temp ) delete temp; } #define OVERSAMPLE 8 void MaskUnit::draw_line_clamped(VFrame *frame, int x1, int y1, int x2, int y2, unsigned char k) { int draw_x1, draw_y1; int draw_x2, draw_y2; if( y2 < y1 ) { draw_x1 = x2; draw_y1 = y2; draw_x2 = x1; draw_y2 = y1; } else { draw_x1 = x1; draw_y1 = y1; draw_x2 = x2; draw_y2 = y2; } unsigned char **rows = (unsigned char**)frame->get_rows(); if( draw_y2 != draw_y1 ) { float slope = ((float)draw_x2 - draw_x1) / ((float)draw_y2 - draw_y1); int w = frame->get_w() - 1; int h = frame->get_h(); for( float y = draw_y1; y < draw_y2; y++ ) { if( y >= 0 && y < h ) { int x = (int)((y - draw_y1) * slope + draw_x1); int y_i = (int)y; int x_i = CLIP(x, 0, w); if( rows[y_i][x_i] == k ) rows[y_i][x_i] = 0; else rows[y_i][x_i] = k; } } } } void MaskUnit::blur_strip(double *val_p, double *val_m, double *dst, double *src, int size, int max) { double *sp_p = src; double *sp_m = src + size - 1; double *vp = val_p; double *vm = val_m + size - 1; double initial_p = sp_p[0]; double initial_m = sp_m[0]; //printf("MaskUnit::blur_strip %d\n", size); for( int k = 0; k < size; k++ ) { int terms = (k < 4) ? k : 4; int l; for( l = 0; l <= terms; l++ ) { *vp += n_p[l] * sp_p[-l] - d_p[l] * vp[-l]; *vm += n_m[l] * sp_m[l] - d_m[l] * vm[l]; } for( ; l <= 4; l++) { *vp += (n_p[l] - bd_p[l]) * initial_p; *vm += (n_m[l] - bd_m[l]) * initial_m; } sp_p++; sp_m--; vp++; vm--; } for( int i = 0; i < size; i++ ) { double sum = val_p[i] + val_m[i]; CLAMP(sum, 0, max); dst[i] = sum; } } void MaskUnit::do_feather(VFrame *output, VFrame *input, double feather, int start_y, int end_y, int start_x, int end_x) { //printf("MaskUnit::do_feather %f\n", feather); // Get constants double constants[8]; double div; double std_dev = sqrt(-(double)(feather * feather) / (2 * log(1.0 / 255.0))); div = sqrt(2 * M_PI) * std_dev; constants[0] = -1.783 / std_dev; constants[1] = -1.723 / std_dev; constants[2] = 0.6318 / std_dev; constants[3] = 1.997 / std_dev; constants[4] = 1.6803 / div; constants[5] = 3.735 / div; constants[6] = -0.6803 / div; constants[7] = -0.2598 / div; n_p[0] = constants[4] + constants[6]; n_p[1] = exp(constants[1]) * (constants[7] * sin(constants[3]) - (constants[6] + 2 * constants[4]) * cos(constants[3])) + exp(constants[0]) * (constants[5] * sin(constants[2]) - (2 * constants[6] + constants[4]) * cos(constants[2])); n_p[2] = 2 * exp(constants[0] + constants[1]) * ((constants[4] + constants[6]) * cos(constants[3]) * cos(constants[2]) - constants[5] * cos(constants[3]) * sin(constants[2]) - constants[7] * cos(constants[2]) * sin(constants[3])) + constants[6] * exp(2 * constants[0]) + constants[4] * exp(2 * constants[1]); n_p[3] = exp(constants[1] + 2 * constants[0]) * (constants[7] * sin(constants[3]) - constants[6] * cos(constants[3])) + exp(constants[0] + 2 * constants[1]) * (constants[5] * sin(constants[2]) - constants[4] * cos(constants[2])); n_p[4] = 0.0; d_p[0] = 0.0; d_p[1] = -2 * exp(constants[1]) * cos(constants[3]) - 2 * exp(constants[0]) * cos(constants[2]); d_p[2] = 4 * cos(constants[3]) * cos(constants[2]) * exp(constants[0] + constants[1]) + exp(2 * constants[1]) + exp (2 * constants[0]); d_p[3] = -2 * cos(constants[2]) * exp(constants[0] + 2 * constants[1]) - 2 * cos(constants[3]) * exp(constants[1] + 2 * constants[0]); d_p[4] = exp(2 * constants[0] + 2 * constants[1]); for( int i = 0; i < 5; i++ ) d_m[i] = d_p[i]; n_m[0] = 0.0; for( int i = 1; i <= 4; i++ ) n_m[i] = n_p[i] - d_p[i] * n_p[0]; double sum_n_p, sum_n_m, sum_d; double a, b; sum_n_p = 0.0; sum_n_m = 0.0; sum_d = 0.0; for( int i = 0; i < 5; i++ ) { sum_n_p += n_p[i]; sum_n_m += n_m[i]; sum_d += d_p[i]; } a = sum_n_p / (1 + sum_d); b = sum_n_m / (1 + sum_d); for( int i = 0; i < 5; i++ ) { bd_p[i] = d_p[i] * a; bd_m[i] = d_m[i] * b; } #define DO_FEATHER(type, max) { \ int frame_w = input->get_w(); \ int frame_h = input->get_h(); \ int size = MAX(frame_w, frame_h); \ double *src = new double[size]; \ double *dst = new double[size]; \ double *val_p = new double[size]; \ double *val_m = new double[size]; \ type **in_rows = (type**)input->get_rows(); \ type **out_rows = (type**)output->get_rows(); \ int j; \ \ /* printf("DO_FEATHER 1\n"); */ \ if( end_x > start_x ) { \ for( j = start_x; j < end_x; j++ ) { \ /* printf("DO_FEATHER 1.1 %d\n", j); */ \ bzero(val_p, sizeof(double) * frame_h); \ bzero(val_m, sizeof(double) * frame_h); \ for( int k = 0; k < frame_h; k++ ) { \ src[k] = (double)in_rows[k][j]; \ } \ blur_strip(val_p, val_m, dst, src, frame_h, max); \ for( int k = 0; k < frame_h; k++ ) { \ out_rows[k][j] = (type)dst[k]; \ } \ } \ } \ if( end_y > start_y ) { \ for( j = start_y; j < end_y; j++ ) { \ /* printf("DO_FEATHER 2 %d\n", j); */ \ bzero(val_p, sizeof(double) * frame_w); \ bzero(val_m, sizeof(double) * frame_w); \ for( int k = 0; k < frame_w; k++ ) { \ src[k] = (double)out_rows[j][k]; \ } \ blur_strip(val_p, val_m, dst, src, frame_w, max); \ for( int k = 0; k < frame_w; k++ ) { \ out_rows[j][k] = (type)dst[k]; \ } \ } \ } \ /* printf("DO_FEATHER 3\n"); */ \ delete [] src; \ delete [] dst; \ delete [] val_p; \ delete [] val_m; \ /* printf("DO_FEATHER 4\n"); */ \ } //printf("do_feather %d\n", frame->get_color_model()); switch( input->get_color_model() ) { case BC_A8: DO_FEATHER(unsigned char, 0xff); break; case BC_A16: DO_FEATHER(uint16_t, 0xffff); break; case BC_A_FLOAT: DO_FEATHER(float, 1); break; } } void MaskUnit::process_package(LoadPackage *package) { MaskPackage *ptr = (MaskPackage*)package; float engine_value = engine->value; int engine_mode = engine->mode; if( engine->recalculate && engine->step == DO_MASK ) { VFrame *mask = engine->feather > 0 ? engine->temp_mask : engine->mask; // Generated oversampling frame int mask_w = mask->get_w(); //int mask_h = mask->get_h(); int oversampled_package_w = mask_w * OVERSAMPLE; int oversampled_package_h = (ptr->end_y - ptr->start_y) * OVERSAMPLE; if( temp && (temp->get_w() != oversampled_package_w || temp->get_h() != oversampled_package_h) ) { delete temp; temp = 0; } if( !temp ) { temp = new VFrame(oversampled_package_w, oversampled_package_h, BC_A8, 0); } temp->clear_frame(); // Draw oversampled region of polygons on temp for( int k=0; kpoint_sets.total; ++k ) { int old_x, old_y; unsigned char max = k + 1; ArrayList *points = engine->point_sets.values[k]; if( points->total < 3 ) continue; //printf("MaskUnit::process_package 2 %d %d\n", k, points->total); for( int i=0; itotal; ++i ) { MaskPoint *point1 = points->values[i]; MaskPoint *point2 = (i >= points->total - 1) ? points->values[0] : points->values[i + 1]; float x, y; int segments = (int)(sqrt(SQR(point1->x - point2->x) + SQR(point1->y - point2->y))); if( point1->control_x2 == 0 && point1->control_y2 == 0 && point2->control_x1 == 0 && point2->control_y1 == 0 ) segments = 1; float x0 = point1->x; float y0 = point1->y; float x1 = point1->x + point1->control_x2; float y1 = point1->y + point1->control_y2; float x2 = point2->x + point2->control_x1; float y2 = point2->y + point2->control_y1; float x3 = point2->x; float y3 = point2->y; for( int j = 0; j <= segments; j++ ) { float t = (float)j / segments; float tpow2 = t * t; float tpow3 = t * t * t; float invt = 1 - t; float invtpow2 = invt * invt; float invtpow3 = invt * invt * invt; x = ( invtpow3 * x0 + 3 * t * invtpow2 * x1 + 3 * tpow2 * invt * x2 + tpow3 * x3); y = ( invtpow3 * y0 + 3 * t * invtpow2 * y1 + 3 * tpow2 * invt * y2 + tpow3 * y3); y -= ptr->start_y; x *= OVERSAMPLE; y *= OVERSAMPLE; if( j > 0 ) { draw_line_clamped(temp, old_x, old_y, (int)x, (int)y, max); } old_x = (int)x; old_y = (int)y; } } // Fill in the polygon in the horizontal direction for( int i=0; iget_rows()[i]; int value = 0, total = 0; for( int j=0; j 1 ) { if( total & 0x1 ) --total; for( int j=0; j0 ) { --total; value = value ? 0 : max; } else if( value ) row[j] = value; } } } } #define DOWNSAMPLE(type, temp_type, value, v) do { \ for( int y=0; yend_y-ptr->start_y; ++y ) { \ type *output_row = (type*)mask->get_rows()[y + ptr->start_y]; \ unsigned char **input_rows = (unsigned char**)temp->get_rows() + y * OVERSAMPLE; \ for( int x=0; xget_color_model() ) { case BC_A8: { unsigned char value; value = (int)(engine_value / 100 * 0xff); if( engine->value >= 0 ) DOWNSAMPLE(unsigned char, int64_t, value, total); else DOWNSAMPLE(unsigned char, int64_t, value, value-total); break; } case BC_A16: { uint16_t value; value = (int)(engine_value / 100 * 0xffff); if( engine->value >= 0 ) DOWNSAMPLE(uint16_t, int64_t, value, total); else DOWNSAMPLE(uint16_t, int64_t, value, value-total); break; } case BC_A_FLOAT: { float value; value = engine_value / 100; if( engine->value >= 0 ) DOWNSAMPLE(float, double, value, total); else DOWNSAMPLE(float, double, value, value-total); break; } } } if( engine->step == DO_X_FEATHER && engine->recalculate && // Feather polygon engine->feather > 0 ) { do_feather(engine->mask, engine->temp_mask, engine->feather, ptr->start_y, ptr->end_y, 0, 0); //printf("MaskUnit::process_package 3 %f\n", engine->feather); } if( engine->step == DO_Y_FEATHER && engine->recalculate && // Feather polygon engine->feather > 0 ) { do_feather(engine->mask, engine->temp_mask, engine->feather, 0, 0, ptr->start_x, ptr->end_x); } if( engine->step == DO_APPLY ) { // Apply mask #define APPLY_MASK_ALPHA(cmodel, type, max, components, do_yuv, a, b) \ case cmodel: \ for( int y=ptr->start_y; yend_y; ++y ) { \ type *output_row = (type*)engine->output->get_rows()[y]; \ type *mask_row = (type*)engine->mask->get_rows()[y]; \ int chroma_offset = (int)(max + 1) / 2; \ for( int x=0; xoutput->get_color_model() ) { \ APPLY_MASK_ALPHA(BC_RGB888, unsigned char, 0xff, 3, 0, a, b); \ APPLY_MASK_ALPHA(BC_RGB_FLOAT, float, 1.0, 3, 0, a, b); \ APPLY_MASK_ALPHA(BC_YUV888, unsigned char, 0xff, 3, 1, a, b); \ APPLY_MASK_ALPHA(BC_RGBA_FLOAT, float, 1.0, 4, 0, a, b); \ APPLY_MASK_ALPHA(BC_YUVA8888, unsigned char, 0xff, 4, 1, a, b); \ APPLY_MASK_ALPHA(BC_RGBA8888, unsigned char, 0xff, 4, 0, a, b); \ APPLY_MASK_ALPHA(BC_RGB161616, uint16_t, 0xffff, 3, 0, a, b); \ APPLY_MASK_ALPHA(BC_YUV161616, uint16_t, 0xffff, 3, 1, a, b); \ APPLY_MASK_ALPHA(BC_YUVA16161616, uint16_t, 0xffff, 4, 1, a, b); \ APPLY_MASK_ALPHA(BC_RGBA16161616, uint16_t, 0xffff, 4, 0, a, b); \ } break //printf("MaskUnit::process_package 1 %d\n", engine->mode); int mask_w = engine->mask->get_w(); switch( engine_mode ) { MASK_ALPHA(MASK_MULTIPLY_ALPHA, m, n); MASK_ALPHA(MASK_SUBTRACT_ALPHA, n, m); } } } MaskEngine::MaskEngine(int cpus) : LoadServer(cpus, cpus * OVERSAMPLE * 2) // : LoadServer(1, OVERSAMPLE * 2) { mask = 0; } MaskEngine::~MaskEngine() { if( mask ) { delete mask; delete temp_mask; } for( int i = 0; i < point_sets.total; i++ ) { ArrayList *points = point_sets.values[i]; points->remove_all_objects(); } point_sets.remove_all_objects(); } int MaskEngine::points_equivalent(ArrayList *new_points, ArrayList *points) { //printf("MaskEngine::points_equivalent %d %d\n", new_points->total, points->total); if( new_points->total != points->total ) return 0; for( int i = 0; i < new_points->total; i++ ) { if( !(*new_points->values[i] == *points->values[i]) ) return 0; } return 1; } void MaskEngine::do_mask(VFrame *output, int64_t start_position_project, MaskAutos *keyframe_set, MaskAuto *keyframe, MaskAuto *default_auto) { int new_color_model = 0; recalculate = 0; switch( output->get_color_model() ) { case BC_RGB_FLOAT: case BC_RGBA_FLOAT: new_color_model = BC_A_FLOAT; break; case BC_RGB888: case BC_RGBA8888: case BC_YUV888: case BC_YUVA8888: new_color_model = BC_A8; break; case BC_RGB161616: case BC_RGBA16161616: case BC_YUV161616: case BC_YUVA16161616: new_color_model = BC_A16; break; } // Determine if recalculation is needed SET_TRACE if( mask && (mask->get_w() != output->get_w() || mask->get_h() != output->get_h() || mask->get_color_model() != new_color_model) ) { delete mask; delete temp_mask; mask = 0; recalculate = 1; } if( !recalculate ) { if( point_sets.total != keyframe_set->total_submasks(start_position_project, PLAY_FORWARD) ) recalculate = 1; } if( !recalculate ) { for( int i=0,n=keyframe_set->total_submasks(start_position_project, PLAY_FORWARD); i new_points; keyframe_set->get_points(&new_points, i, start_position_project, PLAY_FORWARD); if( !points_equivalent(&new_points, point_sets.values[i]) ) recalculate = 1; new_points.remove_all_objects(); } } int new_value = keyframe_set->get_value(start_position_project, PLAY_FORWARD); float new_feather = keyframe_set->get_feather(start_position_project, PLAY_FORWARD); if( recalculate || !EQUIV(new_feather, feather) || !EQUIV(new_value, value) ) { recalculate = 1; if( !mask ) { mask = new VFrame(output->get_w(), output->get_h(), new_color_model, 0); temp_mask = new VFrame(output->get_w(), output->get_h(), new_color_model, 0); } if( new_feather > 0 ) temp_mask->clear_frame(); else mask->clear_frame(); for( int i = 0; i < point_sets.total; i++ ) { ArrayList *points = point_sets.values[i]; points->remove_all_objects(); } point_sets.remove_all_objects(); for( int i = 0; i < keyframe_set->total_submasks(start_position_project, PLAY_FORWARD); i++ ) { ArrayList *new_points = new ArrayList; keyframe_set->get_points(new_points, i, start_position_project, PLAY_FORWARD); point_sets.append(new_points); } } this->output = output; this->mode = default_auto->mode; this->feather = new_feather; this->value = new_value; // Run units SET_TRACE step = DO_MASK; process_packages(); step = DO_Y_FEATHER; process_packages(); step = DO_X_FEATHER; process_packages(); step = DO_APPLY; process_packages(); SET_TRACE } void MaskEngine::init_packages() { SET_TRACE //printf("MaskEngine::init_packages 1\n"); int x0 = 0, y0 = 0, i = 0, n = get_total_packages(); int out_w = output->get_w(), out_h = output->get_h(); SET_TRACE while( i < n ) { MaskPackage *ptr = (MaskPackage*)get_package(i++); int x1 = (out_w * i) / n, y1 = (out_h * i) / n; ptr->start_x = x0; ptr->end_x = x1; ptr->start_y = y0; ptr->end_y = y1; x0 = x1; y0 = y1; } SET_TRACE //printf("MaskEngine::init_packages 2\n"); } LoadClient* MaskEngine::new_client() { return new MaskUnit(this); } LoadPackage* MaskEngine::new_package() { return new MaskPackage; }