#include "../libzmpeg3.h" /**********************************************************/ /* inverse two dimensional DCT, Chen-Wang algorithm */ /* (cf. IEEE ASSP-32, pp. 803-816, Aug. 1984) */ /* 32-bit integer arithmetic (8 bit coefficients) */ /* 11 mults, 29 adds per DCT */ /* sE, 18.8.91 */ /**********************************************************/ /* coefficients extended to 12 bit for IEEE1180-1990 */ /* compliance sE, 2.1.94 */ /**********************************************************/ /* this code assumes >> to be a two's-complement arithmetic */ /* right shift: (-2)>>1 == -1 , (-3)>>1 == -2 */ #define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */ #define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */ #define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */ #define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */ #define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */ #define W7 565 /* 2048*sqrt(2)*cos(7*pi/16) */ /* row (horizontal) IDCT * * 7 pi 1 * dst[k] = sum c[l] * src[l] * cos( -- * ( k + - ) * l ) * l=0 8 2 * * where: c[0] = 128 * c[1..7] = 128*sqrt(2) */ static int idct_row(short *blk) { int x0, x1, x2, x3, x4, x5, x6, x7, x8; /* shortcut */ if( !((x1 = blk[4]<<11) | (x2 = blk[6]) | (x3 = blk[2]) | (x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])) ) { blk[0]=blk[1]=blk[2]=blk[3]=blk[4]=blk[5]=blk[6]=blk[7]=blk[0]<<3; return 0; } x0 = (blk[0]<<11) + 128; /* for proper rounding in the fourth stage */ x8 = W7*(x4+x5); /* first stage */ x4 = x8 + (W1-W7)*x4; x5 = x8 - (W1+W7)*x5; x8 = W3*(x6+x7); x6 = x8 - (W3-W5)*x6; x7 = x8 - (W3+W5)*x7; x8 = x0 + x1; /* second stage */ x0 -= x1; x1 = W6*(x3+x2); x2 = x1 - (W2+W6)*x2; x3 = x1 + (W2-W6)*x3; x1 = x4 + x6; x4 -= x6; x6 = x5 + x7; x5 -= x7; x7 = x8 + x3; /* third stage */ x8 -= x3; x3 = x0 + x2; x0 -= x2; x2 = (181*(x4+x5)+128)>>8; x4 = (181*(x4-x5)+128)>>8; blk[0] = (x7+x1)>>8; /* fourth stage */ blk[1] = (x3+x2)>>8; blk[2] = (x0+x4)>>8; blk[3] = (x8+x6)>>8; blk[4] = (x8-x6)>>8; blk[5] = (x0-x4)>>8; blk[6] = (x3-x2)>>8; blk[7] = (x7-x1)>>8; return 0; } /* column (vertical) IDCT * * 7 pi 1 * dst[8*k] = sum c[l] * src[8*l] * cos( -- * ( k + - ) * l ) * l=0 8 2 * * where: c[0] = 1/1024 * c[1..7] = (1/1024)*sqrt(2) */ static int idct_col(short *blk) { int x0, x1, x2, x3, x4, x5, x6, x7, x8; /* shortcut */ if( !((x1 = (blk[8*4]<<8)) | (x2 = blk[8*6]) | (x3 = blk[8*2]) | (x4 = blk[8*1]) | (x5 = blk[8*7]) | (x6 = blk[8*5]) | (x7 = blk[8 * 3])) ) { blk[8*0] = blk[8*1] = blk[8*2] = blk[8*3] = blk[8*4] = blk[8*5] = blk[8*6] = blk[8*7] = (blk[8*0]+32)>>6; return 0; } x0 = (blk[8*0]<<8) + 8192; x8 = W7*(x4+x5) + 4; /* first stage */ x4 = (x8+(W1-W7)*x4)>>3; x5 = (x8-(W1+W7)*x5)>>3; x8 = W3*(x6+x7) + 4; x6 = (x8-(W3-W5)*x6)>>3; x7 = (x8-(W3+W5)*x7)>>3; x8 = x0 + x1; /* second stage */ x0 -= x1; x1 = W6*(x3+x2) + 4; x2 = (x1-(W2+W6)*x2)>>3; x3 = (x1+(W2-W6)*x3)>>3; x1 = x4 + x6; x4 -= x6; x6 = x5 + x7; x5 -= x7; x7 = x8 + x3; /* third stage */ x8 -= x3; x3 = x0 + x2; x0 -= x2; x2 = (181 * (x4+x5) + 128) >> 8; x4 = (181 * (x4-x5) + 128) >> 8; blk[8 * 0] = (x7+x1) >> 14; /* fourth stage */ blk[8 * 1] = (x3+x2) >> 14; blk[8 * 2] = (x0+x4) >> 14; blk[8 * 3] = (x8+x6) >> 14; blk[8 * 4] = (x8-x6) >> 14; blk[8 * 5] = (x0-x4) >> 14; blk[8 * 6] = (x3-x2) >> 14; blk[8 * 7] = (x7-x1) >> 14; return 0; } /* two dimensional inverse discrete cosine transform */ void zslice_decoder_t:: idct_conversion(short* block) { int i; for( i=0; i<8; ++i ) idct_row(block + 8*i); for( i=0; i<8; ++i ) idct_col(block + i); }