/* predict.c, motion compensated prediction */ /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */ /* * Disclaimer of Warranty * * These software programs are available to the user without any license fee or * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims * any and all warranties, whether express, implied, or statuary, including any * implied warranties or merchantability or of fitness for a particular * purpose. In no event shall the copyright-holder be liable for any * incidental, punitive, or consequential damages of any kind whatsoever * arising from the use of these programs. * * This disclaimer of warranty extends to the user of these programs and user's * customers, employees, agents, transferees, successors, and assigns. * * The MPEG Software Simulation Group does not represent or warrant that the * programs furnished hereunder are free of infringement of any third-party * patents. * * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware, * are subject to royalty fees to patent holders. Many of these patents are * general enough such that they are unavoidable regardless of implementation * design. * */ #include "config.h" #include #include "global.h" #include "cpu_accel.h" #include "simd.h" /* private prototypes */ static void predict_mb ( pict_data_s *picture, uint8_t *oldref[], uint8_t *newref[], uint8_t *cur[], int lx, int bx, int by, mbinfo_s *mbi, int secondfield); static void pred ( pict_data_s *picture, uint8_t *src[], int sfield, uint8_t *dst[], int dfield, int lx, int w, int h, int x, int y, int dx, int dy, int addflag); static void pred_comp ( pict_data_s *picture, uint8_t *src, uint8_t *dst, int lx, int w, int h, int x, int y, int dx, int dy, int addflag); #ifdef X86_CPU static void pred_comp_mmxe( pict_data_s *picture, uint8_t *src, uint8_t *dst, int lx, int w, int h, int x, int y, int dx, int dy, int addflag); static void pred_comp_mmx( pict_data_s *picture, uint8_t *src, uint8_t *dst, int lx, int w, int h, int x, int y, int dx, int dy, int addflag); #endif static void calc_DMV ( pict_data_s *picture,int DMV[][2], int *dmvector, int mvx, int mvy); static void clearblock (pict_data_s *picture, uint8_t *cur[], int i0, int j0); /* Initialise prediction - currently purely selection of which versions of the various low level computation routines to use */ static void (*ppred_comp)( pict_data_s *picture, uint8_t *src, uint8_t *dst, int lx, int w, int h, int x, int y, int dx, int dy, int addflag); void init_predict_hv() { int cpucap = cpu_accel(); if( cpucap == 0 ) /* No MMX/SSE etc support available */ { ppred_comp = pred_comp; } #ifdef X86_CPU else if(cpucap & ACCEL_X86_MMXEXT ) /* AMD MMX or SSE... */ { if(verbose) fprintf( stderr, "SETTING EXTENDED MMX for PREDICTION!\n"); ppred_comp = pred_comp_mmxe; } else if(cpucap & ACCEL_X86_MMX ) /* Original MMX... */ { if(verbose) fprintf( stderr, "SETTING MMX for PREDICTION!\n"); ppred_comp = pred_comp_mmx; } #endif else { ppred_comp = pred_comp; } } /* form prediction for a complete picture (frontend for predict_mb) * * reff: reference frame for forward prediction * refb: reference frame for backward prediction * cur: destination (current) frame * secondfield: predict second field of a frame * mbi: macroblock info * * Notes: * - cf. predict_mb */ void predict(pict_data_s *picture, uint8_t *reff[], uint8_t *refb[], uint8_t *cur[3], int secondfield) { int i, j, k; mbinfo_s *mbi = picture->mbinfo; k = 0; /* loop through all macroblocks of the picture */ for (j=0; jmb_type&MB_INTRA) { clearblock(picture,cur,bx,by); return; } addflag = 0; /* first prediction is stored, second is added and averaged */ if ((mbi->mb_type & MB_FORWARD) || (picture->pict_type==P_TYPE)) { /* forward prediction, including zero MV in P pictures */ if (picture->pict_struct==FRAME_PICTURE) { /* frame picture */ if ((mbi->motion_type==MC_FRAME) || !(mbi->mb_type & MB_FORWARD)) { /* frame-based prediction in frame picture */ pred(picture, oldref,0,cur,0, lx,16,16,bx,by,mbi->MV[0][0][0],mbi->MV[0][0][1],0); } else if (mbi->motion_type==MC_FIELD) { /* field-based prediction in frame picture * * note scaling of the vertical coordinates (by, mbi->MV[][0][1]) * from frame to field! */ /* top field prediction */ pred(picture,oldref,mbi->mv_field_sel[0][0],cur,0, lx<<1,16,8,bx,by>>1,mbi->MV[0][0][0],mbi->MV[0][0][1]>>1,0); /* bottom field prediction */ pred(picture,oldref,mbi->mv_field_sel[1][0],cur,1, lx<<1,16,8,bx,by>>1,mbi->MV[1][0][0],mbi->MV[1][0][1]>>1,0); } else if (mbi->motion_type==MC_DMV) { /* dual prime prediction */ /* calculate derived motion vectors */ calc_DMV(picture,DMV,mbi->dmvector,mbi->MV[0][0][0],mbi->MV[0][0][1]>>1); /* predict top field from top field */ pred(picture,oldref,0,cur,0, lx<<1,16,8,bx,by>>1,mbi->MV[0][0][0],mbi->MV[0][0][1]>>1,0); /* predict bottom field from bottom field */ pred(picture,oldref,1,cur,1, lx<<1,16,8,bx,by>>1,mbi->MV[0][0][0],mbi->MV[0][0][1]>>1,0); /* predict and add to top field from bottom field */ pred(picture,oldref,1,cur,0, lx<<1,16,8,bx,by>>1,DMV[0][0],DMV[0][1],1); /* predict and add to bottom field from top field */ pred(picture,oldref,0,cur,1, lx<<1,16,8,bx,by>>1,DMV[1][0],DMV[1][1],1); } else { /* invalid mbi->motion_type in frame picture */ fprintf(stderr,"invalid motion_type\n"); } } else /* TOP_FIELD or BOTTOM_FIELD */ { /* field picture */ currentfield = (picture->pict_struct==BOTTOM_FIELD); /* determine which frame to use for prediction */ if ((picture->pict_type==P_TYPE) && secondfield && (currentfield!=mbi->mv_field_sel[0][0])) predframe = newref; /* same frame */ else predframe = oldref; /* previous frame */ if ((mbi->motion_type==MC_FIELD) || !(mbi->mb_type & MB_FORWARD)) { /* field-based prediction in field picture */ pred(picture,predframe,mbi->mv_field_sel[0][0],cur,currentfield, lx<<1,16,16,bx,by,mbi->MV[0][0][0],mbi->MV[0][0][1],0); } else if (mbi->motion_type==MC_16X8) { /* 16 x 8 motion compensation in field picture */ /* upper half */ pred(picture,predframe,mbi->mv_field_sel[0][0],cur,currentfield, lx<<1,16,8,bx,by,mbi->MV[0][0][0],mbi->MV[0][0][1],0); /* determine which frame to use for lower half prediction */ if ((picture->pict_type==P_TYPE) && secondfield && (currentfield!=mbi->mv_field_sel[1][0])) predframe = newref; /* same frame */ else predframe = oldref; /* previous frame */ /* lower half */ pred(picture,predframe,mbi->mv_field_sel[1][0],cur,currentfield, lx<<1,16,8,bx,by+8,mbi->MV[1][0][0],mbi->MV[1][0][1],0); } else if (mbi->motion_type==MC_DMV) { /* dual prime prediction */ /* determine which frame to use for prediction */ if (secondfield) predframe = newref; /* same frame */ else predframe = oldref; /* previous frame */ /* calculate derived motion vectors */ calc_DMV(picture,DMV,mbi->dmvector,mbi->MV[0][0][0],mbi->MV[0][0][1]); /* predict from field of same parity */ pred(picture,oldref,currentfield,cur,currentfield, lx<<1,16,16,bx,by,mbi->MV[0][0][0],mbi->MV[0][0][1],0); /* predict from field of opposite parity */ pred(picture,predframe,!currentfield,cur,currentfield, lx<<1,16,16,bx,by,DMV[0][0],DMV[0][1],1); } else { /* invalid motion_type in field picture */ fprintf(stderr,"invalid motion_type\n"); } } addflag = 1; /* next prediction (if any) will be averaged with this one */ } if (mbi->mb_type & MB_BACKWARD) { /* backward prediction */ if (picture->pict_struct==FRAME_PICTURE) { /* frame picture */ if (mbi->motion_type==MC_FRAME) { /* frame-based prediction in frame picture */ pred(picture,newref,0,cur,0, lx,16,16,bx,by,mbi->MV[0][1][0],mbi->MV[0][1][1],addflag); } else { /* field-based prediction in frame picture * * note scaling of the vertical coordinates (by, mbi->MV[][1][1]) * from frame to field! */ /* top field prediction */ pred(picture,newref,mbi->mv_field_sel[0][1],cur,0, lx<<1,16,8,bx,by>>1,mbi->MV[0][1][0],mbi->MV[0][1][1]>>1,addflag); /* bottom field prediction */ pred(picture,newref,mbi->mv_field_sel[1][1],cur,1, lx<<1,16,8,bx,by>>1,mbi->MV[1][1][0],mbi->MV[1][1][1]>>1,addflag); } } else /* TOP_FIELD or BOTTOM_FIELD */ { /* field picture */ currentfield = (picture->pict_struct==BOTTOM_FIELD); if (mbi->motion_type==MC_FIELD) { /* field-based prediction in field picture */ pred(picture,newref,mbi->mv_field_sel[0][1],cur,currentfield, lx<<1,16,16,bx,by,mbi->MV[0][1][0],mbi->MV[0][1][1],addflag); } else if (mbi->motion_type==MC_16X8) { /* 16 x 8 motion compensation in field picture */ /* upper half */ pred(picture,newref,mbi->mv_field_sel[0][1],cur,currentfield, lx<<1,16,8,bx,by,mbi->MV[0][1][0],mbi->MV[0][1][1],addflag); /* lower half */ pred(picture,newref,mbi->mv_field_sel[1][1],cur,currentfield, lx<<1,16,8,bx,by+8,mbi->MV[1][1][0],mbi->MV[1][1][1],addflag); } else { /* invalid motion_type in field picture */ fprintf(stderr,"invalid motion_type\n"); } } } } /* predict a rectangular block (all three components) * * src: source frame (Y,U,V) * sfield: source field select (0: frame or top field, 1: bottom field) * dst: destination frame (Y,U,V) * dfield: destination field select (0: frame or top field, 1: bottom field) * * the following values are in luminance picture (frame or field) dimensions * lx: distance of vertically adjacent pels (selects frame or field pred.) * w,h: width and height of block (only 16x16 or 16x8 are used) * x,y: coordinates of destination block * dx,dy: half pel motion vector * addflag: store or add (= average) prediction */ static void pred ( pict_data_s *picture, uint8_t *src[], int sfield, uint8_t *dst[], int dfield, int lx, int w, int h, int x, int y, int dx, int dy, int addflag ) { int cc; for (cc=0; cc<3; cc++) { if (cc==1) { /* scale for color components */ if (chroma_format==CHROMA420) { /* vertical */ h >>= 1; y >>= 1; dy /= 2; } if (chroma_format!=CHROMA444) { /* horizontal */ w >>= 1; x >>= 1; dx /= 2; lx >>= 1; } } (*ppred_comp)( picture, src[cc]+(sfield?lx>>1:0),dst[cc]+(dfield?lx>>1:0), lx,w,h,x,y,dx,dy,addflag); } } /* low level prediction routine * * src: prediction source * dst: prediction destination * lx: line width (for both src and dst) * x,y: destination coordinates * dx,dy: half pel motion vector * w,h: size of prediction block * addflag: store or add prediction * * There are also SIMD versions of this routine... */ static void pred_comp( pict_data_s *picture, uint8_t *src, uint8_t *dst, int lx, int w, int h, int x, int y, int dx, int dy, int addflag) { int xint, xh, yint, yh; int i, j; uint8_t *s, *d; /* half pel scaling */ xint = dx>>1; /* integer part */ xh = dx & 1; /* half pel flag */ yint = dy>>1; yh = dy & 1; /* origins */ s = src + lx*(y+yint) + (x+xint); /* motion vector */ d = dst + lx*y + x; if (!xh && !yh) if (addflag) for (j=0; j>1; s+= lx; d+= lx; } else for (j=0; j>1)+1)>>1; s+= lx; d+= lx; } else for (j=0; j>1; s+= lx; d+= lx; } else if (xh && !yh) if (addflag) for (j=0; j>1)+1)>>1; s+= lx; d+= lx; } else for (j=0; j>1; s+= lx; d+= lx; } else /* if (xh && yh) */ if (addflag) for (j=0; j>2)+1)>>1; s+= lx; d+= lx; } else for (j=0; j>2; s+= lx; d+= lx; } } #ifdef X86_CPU static void pred_comp_mmxe( pict_data_s *picture, uint8_t *src, uint8_t *dst, int lx, int w, int h, int x, int y, int dx, int dy, int addflag) { int xint, xh, yint, yh; uint8_t *s, *d; /* half pel scaling */ xint = dx>>1; /* integer part */ xh = dx & 1; /* half pel flag */ yint = dy>>1; yh = dy & 1; /* origins */ s = src + lx*(y+yint) + (x+xint); /* motion vector */ d = dst + lx*y + x; if( xh ) { if( yh ) predcomp_11_mmxe(s,d,lx,w,h,addflag); else /* !yh */ predcomp_10_mmxe(s,d,lx,w,h,addflag); } else /* !xh */ { if( yh ) predcomp_01_mmxe(s,d,lx,w,h,addflag); else /* !yh */ predcomp_00_mmxe(s,d,lx,w,h,addflag); } } static void pred_comp_mmx( pict_data_s *picture, uint8_t *src, uint8_t *dst, int lx, int w, int h, int x, int y, int dx, int dy, int addflag) { int xint, xh, yint, yh; uint8_t *s, *d; /* half pel scaling */ xint = dx>>1; /* integer part */ xh = dx & 1; /* half pel flag */ yint = dy>>1; yh = dy & 1; /* origins */ s = src + lx*(y+yint) + (x+xint); /* motion vector */ d = dst + lx*y + x; if( xh ) { if( yh ) predcomp_11_mmx(s,d,lx,w,h,addflag); else /* !yh */ predcomp_10_mmx(s,d,lx,w,h,addflag); } else /* !xh */ { if( yh ) predcomp_01_mmx(s,d,lx,w,h,addflag); else /* !yh */ predcomp_00_mmx(s,d,lx,w,h,addflag); } } #endif /* calculate derived motion vectors (DMV) for dual prime prediction * dmvector[2]: differential motion vectors (-1,0,+1) * mvx,mvy: motion vector (for same parity) * * DMV[2][2]: derived motion vectors (for opposite parity) * * uses global variables pict_struct and topfirst * * Notes: * - all vectors are in field coordinates (even for frame pictures) */ static void calc_DMV( pict_data_s *picture,int DMV[][2], int *dmvector, int mvx, int mvy ) { if (picture->pict_struct==FRAME_PICTURE) { if (picture->topfirst) { /* vector for prediction of top field from bottom field */ DMV[0][0] = ((mvx +(mvx>0))>>1) + dmvector[0]; DMV[0][1] = ((mvy +(mvy>0))>>1) + dmvector[1] - 1; /* vector for prediction of bottom field from top field */ DMV[1][0] = ((3*mvx+(mvx>0))>>1) + dmvector[0]; DMV[1][1] = ((3*mvy+(mvy>0))>>1) + dmvector[1] + 1; } else { /* vector for prediction of top field from bottom field */ DMV[0][0] = ((3*mvx+(mvx>0))>>1) + dmvector[0]; DMV[0][1] = ((3*mvy+(mvy>0))>>1) + dmvector[1] - 1; /* vector for prediction of bottom field from top field */ DMV[1][0] = ((mvx +(mvx>0))>>1) + dmvector[0]; DMV[1][1] = ((mvy +(mvy>0))>>1) + dmvector[1] + 1; } } else { /* vector for prediction from field of opposite 'parity' */ DMV[0][0] = ((mvx+(mvx>0))>>1) + dmvector[0]; DMV[0][1] = ((mvy+(mvy>0))>>1) + dmvector[1]; /* correct for vertical field shift */ if (picture->pict_struct==TOP_FIELD) DMV[0][1]--; else DMV[0][1]++; } } static void clearblock( pict_data_s *picture, uint8_t *cur[], int i0, int j0 ) { int i, j, w, h; uint8_t *p; p = cur[0] + ((picture->pict_struct==BOTTOM_FIELD) ? width : 0) + i0 + width2*j0; for (j=0; j<16; j++) { for (i=0; i<16; i++) p[i] = 128; p+= width2; } w = h = 16; if (chroma_format!=CHROMA444) { i0>>=1; w>>=1; } if (chroma_format==CHROMA420) { j0>>=1; h>>=1; } p = cur[1] + ((picture->pict_struct==BOTTOM_FIELD) ? chrom_width : 0) + i0 + chrom_width2*j0; for (j=0; jpict_struct==BOTTOM_FIELD) ? chrom_width : 0) + i0 + chrom_width2*j0; for (j=0; j