/* * CINELERRA * Copyright (C) 2008 Adam Williams * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include "bcdisplayinfo.h" #include "bcsignals.h" #include "clip.h" #include "bchash.h" #include "filexml.h" #include "bistogram.h" #include "bistogramconfig.h" #include "bistogramwindow.h" #include "keyframe.h" #include "language.h" #include "loadbalance.h" #include "bccolors.h" #include "vframe.h" class HistogramMain; class HistogramEngine; class HistogramWindow; REGISTER_PLUGIN(HistogramMain) HistogramMain::HistogramMain(PluginServer *server) : PluginVClient(server) { engine = 0; for( int i=0; iwindow; window->lock_window("HistogramMain::render_gui"); window->update_canvas(); if(config.automatic) { window->update_input(); } window->unlock_window(); } } void HistogramMain::update_gui() { if( !thread ) return; HistogramWindow *window = (HistogramWindow *)thread->window; // points delete in load_configuration,read_data window->lock_window("HistogramMain::update_gui"); if( load_configuration() ) { window->update(0); if(!config.automatic) window->update_input(); } window->unlock_window(); } void HistogramMain::save_data(KeyFrame *keyframe) { FileXML output; // cause data to be stored directly in text output.set_shared_output(keyframe->xbuf); output.tag.set_title("HISTOGRAM"); char string[BCTEXTLEN]; for( int i=0; ix); output.tag.set_property("Y", current->y); output.tag.set_property("GRADIENT", current->gradient); output.tag.set_property("XOFFSET_LEFT", current->xoffset_left); output.tag.set_property("XOFFSET_RIGHT", current->xoffset_right); output.append_tag(); output.tag.set_title("/POINT"); output.append_tag(); output.append_newline(); current = NEXT; } output.tag.set_title("/POINTS"); output.append_tag(); output.append_newline(); } output.terminate_string(); } void HistogramMain::read_data(KeyFrame *keyframe) { FileXML input; input.set_shared_input(keyframe->xbuf); int result = 0; int current_input_mode = 0; while( !(result = input.read_tag()) ) { if( input.tag.title_is("HISTOGRAM") ) { char string[BCTEXTLEN]; for( int i=0; ilast ) delete points->last; while( !(result = input.read_tag()) ) { if( input.tag.title_is("/POINTS") ) break; if(input.tag.title_is("POINT") ) { points->insert( input.tag.get_property("X", 0.0), input.tag.get_property("Y", 0.0)); points->last->gradient = input.tag.get_property("GRADIENT", 1.0); points->last->xoffset_left = input.tag.get_property("XOFFSET_LEFT", -0.02); points->last->xoffset_right = input.tag.get_property("XOFFSET_RIGHT", 0.02); } } ++current_input_mode; } } } config.boundaries(); } float HistogramMain::calculate_linear(float input, int subscript, int use_value) { int done = 0; float output; if(input < 0) { output = 0; done = 1; } if(input > 1) { output = 1; done = 1; } if(!done) { float x1 = 0, y1 = 0; float grad1 = 1.0; float x1right = 0; float x2 = 1, y2 = 1; float grad2 = 1.0; float x2left = 0; // Get 2 points surrounding current position HistogramPoints *points = &config.points[subscript]; HistogramPoint *current = points->first; int done = 0; while( current && !done ) { if( current->x > input ) { x2 = current->x; y2 = current->y; grad2 = current->gradient; x2left = current->xoffset_left; done = 1; } else current = NEXT; } current = points->last; done = 0; while( current && !done ) { if( current->x <= input ) { x1 = current->x; y1 = current->y; grad1 = current->gradient; done = 1; x1right = current->xoffset_right; } else current = PREVIOUS; } if( !EQUIV(x2 - x1, 0) ) { if( config.smoothMode == HISTOGRAM_LINEAR ) output = (input - x1) * (y2 - y1) / (x2 - x1) + y1; else if( config.smoothMode == HISTOGRAM_POLYNOMINAL ) { /* Construct third grade polynom between every two points */ float dx = x2 - x1; float dy = y2 - y1; float delx = input - x1; output = (grad2 * dx + grad1 * dx - 2*dy) / (dx * dx * dx) * delx * delx * delx + (3*dy - 2* grad1*dx - grad2*dx) / (dx * dx) * delx * delx + grad1*delx + y1; } else if( config.smoothMode == HISTOGRAM_BEZIER ) { /* Using standart DeCasteljau algorithm */ float y1right = y1 + grad1 * x1right; float y2left = y2 + grad2 * x2left; float t = (input - x1) / (x2 - x1); float pointAy = y1 + (y1right - y1) * t; float pointBy = y1right + (y2left - y1right) * t; float pointCy = y2left + (y2 - y2left) * t; float pointABy = pointAy + (pointBy - pointAy) * t; float pointBCy = pointBy + (pointCy - pointBy) * t; output = pointABy + (pointBCy - pointABy) * t; } } else // Linear output = input * y2; } // Apply value curve if( use_value ) { output = calculate_linear(output, HISTOGRAM_VALUE, 0); } float output_min = config.output_min[subscript]; float output_max = config.output_max[subscript]; // Compress output for value followed by channel output = output_min + output * (output_max - output_min); return output; } float HistogramMain::calculate_smooth(float input, int subscript) { int bins = slots * (HISTOGRAM_MAX-HISTOGRAM_MIN)/100; int bins1 = bins-1; float x_f = (input - HIST_MIN_INPUT) * bins / FLOAT_RANGE; int x_i1 = (int)x_f; int x_i2 = x_i1 + 1; CLAMP(x_i1, 0, bins1); CLAMP(x_i2, 0, bins1); CLAMP(x_f, 0, bins1); float smooth1 = smoothed[subscript][x_i1]; float smooth2 = smoothed[subscript][x_i2]; float result = smooth1 + (smooth2 - smooth1) * (x_f - x_i1); CLAMP(result, 0, 1.0); return result; } void HistogramMain::calculate_histogram(VFrame *data) { int color_model = data->get_color_model(); int pix_sz = BC_CModels::calculate_pixelsize(color_model); int comp_sz = pix_sz / BC_CModels::components(color_model); int needed_slots = comp_sz > 1 ? 0x10000 : 0x100; if( slots != needed_slots ) { reset(); slots = needed_slots; } int bins = slots * (HISTOGRAM_MAX-HISTOGRAM_MIN)/100; if( !accum[0] ) { for( int i=0; iget_w() * data->get_h() * pix_sz / 0x80000 + 2; int smps = get_project_smp(); if( cpus > smps ) cpus = smps; engine = new HistogramEngine(this, cpus, cpus); } engine->process_packages(HistogramEngine::HISTOGRAM, data); for( int i=0; iget_total_clients(); ++i ) { HistogramUnit *unit = (HistogramUnit*)engine->get_client(i); if( i == 0 ) { for( int j=0; jaccum[j], sizeof(int)*bins); } else { for( int j=0; jaccum[j]; for( int k=0; kaccum[i]; int pixels = data->get_w() * data->get_h(); float white_fraction = 1.0 - (1.0 - config.threshold) / 2; int threshold = (int)(white_fraction * pixels); int total = 0; float max_level = 1.0; float min_level = 0.0; // Get histogram slot above threshold of pixels for( int j=0; j= threshold ) { max_level = (float)j/bins * FLOAT_RANGE + HIST_MIN_INPUT; break; } } // Get slot below 99% of pixels total = 0; for( int j=bins; --j>=0; ) { total += accum[j]; if( total >= threshold ) { min_level = (float)j/bins * FLOAT_RANGE + HIST_MIN_INPUT; break; } } config.points[i].insert(max_level, 1.0); config.points[i].insert(min_level, 0.0); } } int HistogramMain::process_realtime(VFrame *input_ptr, VFrame *output_ptr) { this->input = input_ptr; this->output = output_ptr; int need_reconfigure = load_configuration(); int color_model = input->get_color_model(); int pix_sz = BC_CModels::calculate_pixelsize(color_model); int comp_sz = pix_sz / BC_CModels::components(color_model); int needed_slots = comp_sz > 1 ? 0x10000 : 0x100; if( slots != needed_slots ) { reset(); slots = needed_slots; need_reconfigure = 1; } send_render_gui(input); if( input->get_rows()[0] != output_ptr->get_rows()[0] ) { output_ptr->copy_from(input); } SET_TRACE // Generate tables here. The same table is used by many packages to render // each horizontal stripe. Need to cover the entire output range in each // table to avoid green borders if( !lookup[0] || !smoothed[0] || !linear[0] || config.automatic) need_reconfigure = 1; if( need_reconfigure ) { SET_TRACE // Calculate new curves if( config.automatic ) { calculate_automatic(input); } SET_TRACE // Generate transfer tables for integer colormodels. for( int i=0; i<3; ++i ) tabulate_curve(i, 1); SET_TRACE } if( !engine ) { int cpus = input->get_w() * input->get_h() * pix_sz / 0x80000 + 2; int smps = get_project_smp(); if( cpus > smps ) cpus = smps; engine = new HistogramEngine(this, cpus, cpus); } // Apply histogram engine->process_packages(HistogramEngine::APPLY, input); SET_TRACE return 0; } void HistogramMain::tabulate_curve(int subscript, int use_value) { int bins = slots * (HISTOGRAM_MAX-HISTOGRAM_MIN)/100; if(!lookup[subscript]) lookup[subscript] = new int[bins]; if(!smoothed[subscript]) smoothed[subscript] = new float[bins]; if(!linear[subscript]) linear[subscript] = new float[bins]; float *current_smooth = smoothed[subscript]; float *current_linear = linear[subscript]; // Make linear curve for( int i=0; iplugin = plugin; this->server = server; int bins = plugin->slots * (HISTOGRAM_MAX-HISTOGRAM_MIN)/100; for( int i=0; islots * (HISTOGRAM_MAX-HISTOGRAM_MIN)/100; int bins1 = bins-1; int slots1 = -HISTOGRAM_MIN * (plugin->slots-1) / 100; if( server->operation == HistogramEngine::HISTOGRAM ) { #define HISTOGRAM_HEAD(type) \ { \ for( int i=pkg->start; iend; ++i ) { \ type *row = (type*)data->get_rows()[i]; \ for( int j=0; jdata; int w = data->get_w(); // int h = data->get_h(); int *accum_r = accum[HISTOGRAM_RED]; int *accum_g = accum[HISTOGRAM_GREEN]; int *accum_b = accum[HISTOGRAM_BLUE]; int *accum_v = accum[HISTOGRAM_VALUE]; int r, g, b, y, u, v; switch( data->get_color_model() ) { case BC_RGB888: HISTOGRAM_HEAD(unsigned char) r = row[0]; g = row[1]; b = row[2]; HISTOGRAM_TAIL(3) break; case BC_RGB_FLOAT: HISTOGRAM_HEAD(float) r = (int)(row[0] * 0xffff); g = (int)(row[1] * 0xffff); b = (int)(row[2] * 0xffff); HISTOGRAM_TAIL(3) break; case BC_YUV888: HISTOGRAM_HEAD(unsigned char) y = row[0]; u = row[1]; v = row[2]; YUV::yuv.yuv_to_rgb_8(r, g, b, y, u, v); HISTOGRAM_TAIL(3) break; case BC_RGBA8888: HISTOGRAM_HEAD(unsigned char) r = row[0]; g = row[1]; b = row[2]; HISTOGRAM_TAIL(4) break; case BC_RGBA_FLOAT: HISTOGRAM_HEAD(float) r = (int)(row[0] * 0xffff); g = (int)(row[1] * 0xffff); b = (int)(row[2] * 0xffff); HISTOGRAM_TAIL(4) break; case BC_YUVA8888: HISTOGRAM_HEAD(unsigned char) y = row[0]; u = row[1]; v = row[2]; YUV::yuv.yuv_to_rgb_8(r, g, b, y, u, v); HISTOGRAM_TAIL(4) break; case BC_RGB161616: HISTOGRAM_HEAD(uint16_t) r = row[0]; g = row[1]; b = row[2]; HISTOGRAM_TAIL(3) break; case BC_YUV161616: HISTOGRAM_HEAD(uint16_t) y = row[0]; u = row[1]; v = row[2]; YUV::yuv.yuv_to_rgb_16(r, g, b, y, u, v); HISTOGRAM_TAIL(3) break; case BC_RGBA16161616: HISTOGRAM_HEAD(uint16_t) r = row[0]; g = row[1]; b = row[2]; HISTOGRAM_TAIL(3) break; case BC_YUVA16161616: HISTOGRAM_HEAD(uint16_t) y = row[0]; u = row[1]; v = row[2]; YUV::yuv.yuv_to_rgb_16(r, g, b, y, u, v); HISTOGRAM_TAIL(4) break; } } else if( server->operation == HistogramEngine::APPLY ) { #define PROCESS(type, components) \ { \ for( int i=pkg->start; iend; ++i ) { \ type *row = (type*)input->get_rows()[i]; \ for( int j=0; jconfig.split && ((j + i * w / h) < w) ) \ continue; \ row[0] = lookup_r[row[0]]; \ row[1] = lookup_g[row[1]]; \ row[2] = lookup_b[row[2]]; \ row += components; \ } \ } \ } #define PROCESS_YUV(type, components, max) \ { \ for( int i=pkg->start; iend; ++i ) { \ type *row = (type*)input->get_rows()[i]; \ for( int j=0; jconfig.split && ((j + i * w / h) < w) ) \ continue; \ y = row[0]; u = row[1]; v = row[2]; \ if( max == 0xff ) \ YUV::yuv.yuv_to_rgb_8(r, g, b, y, u, v); \ else \ YUV::yuv.yuv_to_rgb_16(r, g, b, y, u, v); \ r = lookup_r[r]; g = lookup_g[g]; b = lookup_b[b]; \ if( max == 0xff ) \ YUV::yuv.rgb_to_yuv_8(r, g, b, y, u, v); \ else \ YUV::yuv.rgb_to_yuv_16(r, g, b, y, u, v); \ row[0] = y; row[1] = u; row[2] = v; \ row += components; \ } \ } \ } #define PROCESS_FLOAT(components) \ { \ for( int i=pkg->start; iend; ++i ) { \ float *row = (float*)input->get_rows()[i]; \ for( int j=0; jconfig.split && ((j + i * w / h) < w) ) \ continue; \ float r = row[0], g = row[1], b = row[2]; \ r = plugin->calculate_smooth(r, HISTOGRAM_RED); \ g = plugin->calculate_smooth(g, HISTOGRAM_GREEN); \ b = plugin->calculate_smooth(b, HISTOGRAM_BLUE); \ row[0] = r; row[1] = g; row[2] = b; \ row += components; \ } \ } \ } VFrame *input = plugin->input; // VFrame *output = plugin->output; int w = input->get_w(), h = input->get_h(); int *lookup_r = plugin->lookup[0]; int *lookup_g = plugin->lookup[1]; int *lookup_b = plugin->lookup[2]; int r, g, b, y, u, v; switch( input->get_color_model() ) { case BC_RGB888: PROCESS(unsigned char, 3) break; case BC_RGB_FLOAT: PROCESS_FLOAT(3); break; case BC_RGBA8888: PROCESS(unsigned char, 4) break; case BC_RGBA_FLOAT: PROCESS_FLOAT(4); break; case BC_RGB161616: PROCESS(uint16_t, 3) break; case BC_RGBA16161616: PROCESS(uint16_t, 4) break; case BC_YUV888: PROCESS_YUV(unsigned char, 3, 0xff) break; case BC_YUVA8888: PROCESS_YUV(unsigned char, 4, 0xff) break; case BC_YUV161616: PROCESS_YUV(uint16_t, 3, 0xffff) break; case BC_YUVA16161616: PROCESS_YUV(uint16_t, 4, 0xffff) break; } } } HistogramEngine::HistogramEngine(HistogramMain *plugin, int total_clients, int total_packages) : LoadServer(total_clients, total_packages) { this->plugin = plugin; } void HistogramEngine::init_packages() { total_size = data->get_h(); for( int i=0,start=0,n=get_total_packages(); istart = start; package->end = start = (total_size * ++i)/ n; } int bins = plugin->slots * (HISTOGRAM_MAX-HISTOGRAM_MIN)/100; // Initialize clients here in case some don't get run. for( int i=0; iaccum[i], sizeof(int)*bins); } } LoadClient* HistogramEngine::new_client() { return new HistogramUnit(this, plugin); } LoadPackage* HistogramEngine::new_package() { return new HistogramPackage; } void HistogramEngine::process_packages(int operation, VFrame *data) { this->data = data; this->operation = operation; LoadServer::process_packages(); }