/* * CINELERRA * Copyright (C) 2008 Adam Williams * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "affine.h" #include "bcdisplayinfo.h" #include "clip.h" #include "bchash.h" #include "bcsignals.h" #include "filexml.h" #include "keyframe.h" #include "language.h" #include "mainerror.h" #include "motion-cv.h" #include "motionwindow-cv.h" #include "mutex.h" #include "overlayframe.h" #include "rotateframe.h" #include "transportque.h" #include #include REGISTER_PLUGIN(MotionCVMain) //#undef DEBUG MotionCVConfig::MotionCVConfig() { global_range_w = 25; //5; global_range_h = 25; //5; rotation_range = 8; //5; block_count = 1; global_block_w = 33; //MIN_BLOCK; global_block_h = 33; //MIN_BLOCK; rotation_block_w = 16; //MIN_BLOCK; rotation_block_h = 16; //MIN_BLOCK; block_x = 50; block_y = 50; global_positions = 256; rotate_positions = 8; // 4; magnitude = 100; return_speed = 5; //0; mode1 = STABILIZE; global = 1; rotate = 1; addtrackedframeoffset = 0; strcpy(tracking_file, TRACKING_FILE); mode2 = SAVE; //NO_CALCULATE; mode3 = TRACK_PREVIOUS; //TRACK_SINGLE; draw_vectors = 1; track_frame = 0; bottom_is_master = 1; horizontal_only = 0; vertical_only = 0; } void MotionCVConfig::boundaries() { CLAMP(global_range_w, MIN_RADIUS, MAX_RADIUS); CLAMP(global_range_h, MIN_RADIUS, MAX_RADIUS); CLAMP(rotation_range, MIN_ROTATION, MAX_ROTATION); CLAMP(block_count, MIN_BLOCKS, MAX_BLOCKS); CLAMP(global_block_w, MIN_BLOCK, MAX_BLOCK); CLAMP(global_block_h, MIN_BLOCK, MAX_BLOCK); CLAMP(rotation_block_w, MIN_BLOCK, MAX_BLOCK); CLAMP(rotation_block_h, MIN_BLOCK, MAX_BLOCK); } int MotionCVConfig::equivalent(MotionCVConfig &that) { return global_range_w == that.global_range_w && global_range_h == that.global_range_h && rotation_range == that.rotation_range && mode1 == that.mode1 && global == that.global && rotate == that.rotate && addtrackedframeoffset == that.addtrackedframeoffset && !strcmp(tracking_file, that.tracking_file) && draw_vectors == that.draw_vectors && block_count == that.block_count && global_block_w == that.global_block_w && global_block_h == that.global_block_h && rotation_block_w == that.rotation_block_w && rotation_block_h == that.rotation_block_h && EQUIV(block_x, that.block_x) && EQUIV(block_y, that.block_y) && global_positions == that.global_positions && rotate_positions == that.rotate_positions && magnitude == that.magnitude && return_speed == that.return_speed && mode3 == that.mode3 && track_frame == that.track_frame && bottom_is_master == that.bottom_is_master && horizontal_only == that.horizontal_only && vertical_only == that.vertical_only; } void MotionCVConfig::copy_from(MotionCVConfig &that) { global_range_w = that.global_range_w; global_range_h = that.global_range_h; rotation_range = that.rotation_range; mode1 = that.mode1; global = that.global; rotate = that.rotate; addtrackedframeoffset = that.addtrackedframeoffset; strcpy(tracking_file, that.tracking_file); mode2 = that.mode2; draw_vectors = that.draw_vectors; block_count = that.block_count; block_x = that.block_x; block_y = that.block_y; global_positions = that.global_positions; rotate_positions = that.rotate_positions; global_block_w = that.global_block_w; global_block_h = that.global_block_h; rotation_block_w = that.rotation_block_w; rotation_block_h = that.rotation_block_h; magnitude = that.magnitude; return_speed = that.return_speed; mode3 = that.mode3; track_frame = that.track_frame; bottom_is_master = that.bottom_is_master; horizontal_only = that.horizontal_only; vertical_only = that.vertical_only; } void MotionCVConfig::interpolate(MotionCVConfig &prev, MotionCVConfig &next, int64_t prev_frame, int64_t next_frame, int64_t current_frame) { copy_from(prev); } MotionCVMain::MotionCVMain(PluginServer *server) : PluginVClient(server) { engine = 0; rotate_engine = 0; motion_rotate = 0; total_dx = 0; total_dy = 0; total_angle = 0; overlayer = 0; search_area = 0; search_size = 0; temp_frame = 0; previous_frame_number = -1; prev_global_ref = 0; current_global_ref = 0; global_target_src = 0; global_target_dst = 0; cache_file[0] = 0; cache_fp = active_fp = 0; cache_line[0] = 0; cache_key = active_key = -1; dx_offset = dy_offset = 0; load_ok = 0; save_dx = load_dx = 0; save_dy = load_dy = 0; save_dt = load_dt = 0; tracking_frame = -1; prev_rotate_ref = 0; current_rotate_ref = 0; rotate_target_src = 0; rotate_target_dst = 0; } MotionCVMain::~MotionCVMain() { delete engine; delete overlayer; delete[]search_area; delete temp_frame; delete rotate_engine; delete motion_rotate; delete prev_global_ref; delete current_global_ref; delete global_target_src; delete global_target_dst; reset_cache_file(); delete prev_rotate_ref; delete current_rotate_ref; delete rotate_target_src; delete rotate_target_dst; } const char *MotionCVMain::plugin_title() { return N_("MotionCV"); } int MotionCVMain::is_realtime() { return 1; } int MotionCVMain::is_multichannel() { return 1; } NEW_WINDOW_MACRO(MotionCVMain, MotionCVWindow) LOAD_CONFIGURATION_MACRO(MotionCVMain, MotionCVConfig) void MotionCVMain::update_gui() { if( thread ) return; if( !load_configuration() ) return; thread->window->lock_window("MotionCVMain::update_gui"); MotionCVWindow *window = (MotionCVWindow *) thread->window; char string[BCTEXTLEN]; sprintf(string, "%d", config.global_positions); window->global_search_positions->set_text(string); sprintf(string, "%d", config.rotate_positions); window->rotation_search_positions->set_text(string); window->global_block_w->update(config.global_block_w); window->global_block_h->update(config.global_block_h); window->rotation_block_w->update(config.rotation_block_w); window->rotation_block_h->update(config.rotation_block_h); window->block_x->update(config.block_x); window->block_y->update(config.block_y); window->block_x_text->update((float)config.block_x); window->block_y_text->update((float)config.block_y); window->magnitude->update(config.magnitude); window->return_speed->update(config.return_speed); window->track_single->update(config.mode3 == MotionCVConfig::TRACK_SINGLE); window->track_frame_number->update(config.track_frame); window->track_previous->update(config.mode3 == MotionCVConfig::TRACK_PREVIOUS); window->previous_same->update(config.mode3 == MotionCVConfig::PREVIOUS_SAME_BLOCK); if( config.mode3 != MotionCVConfig::TRACK_SINGLE ) window->track_frame_number->disable(); else window->track_frame_number->enable(); window->mode1->set_text(Mode1::to_text(config.mode1)); window->mode2->set_text(Mode2::to_text(config.mode2)); window->mode3->set_text(Mode3::to_text(config.horizontal_only, config.vertical_only)); window->master_layer->set_text(MasterLayer::to_text(config.bottom_is_master)); window->update_mode(); window->unlock_window(); } void MotionCVMain::save_data(KeyFrame *keyframe) { FileXML output; // cause data to be stored directly in text output.set_shared_output(keyframe->xbuf); output.tag.set_title("MOTIONCV"); output.tag.set_property("BLOCK_COUNT", config.block_count); output.tag.set_property("GLOBAL_POSITIONS", config.global_positions); output.tag.set_property("ROTATE_POSITIONS", config.rotate_positions); output.tag.set_property("GLOBAL_BLOCK_W", config.global_block_w); output.tag.set_property("GLOBAL_BLOCK_H", config.global_block_h); output.tag.set_property("ROTATION_BLOCK_W", config.rotation_block_w); output.tag.set_property("ROTATION_BLOCK_H", config.rotation_block_h); output.tag.set_property("BLOCK_X", config.block_x); output.tag.set_property("BLOCK_Y", config.block_y); output.tag.set_property("GLOBAL_RANGE_W", config.global_range_w); output.tag.set_property("GLOBAL_RANGE_H", config.global_range_h); output.tag.set_property("ROTATION_RANGE", config.rotation_range); output.tag.set_property("MAGNITUDE", config.magnitude); output.tag.set_property("RETURN_SPEED", config.return_speed); output.tag.set_property("MODE1", config.mode1); output.tag.set_property("GLOBAL", config.global); output.tag.set_property("ROTATE", config.rotate); output.tag.set_property("ADDTRACKEDFRAMEOFFSET", config.addtrackedframeoffset); output.tag.set_property("TRACKING_FILE", config.tracking_file); output.tag.set_property("MODE2", config.mode2); output.tag.set_property("DRAW_VECTORS", config.draw_vectors); output.tag.set_property("MODE3", config.mode3); output.tag.set_property("TRACK_FRAME", config.track_frame); output.tag.set_property("BOTTOM_IS_MASTER", config.bottom_is_master); output.tag.set_property("HORIZONTAL_ONLY", config.horizontal_only); output.tag.set_property("VERTICAL_ONLY", config.vertical_only); output.append_tag(); output.tag.set_title("/MOTIONCV"); output.append_tag(); output.terminate_string(); } void MotionCVMain::read_data(KeyFrame *keyframe) { FileXML input; input.set_shared_input(keyframe->xbuf); int result = 0; while( !(result = input.read_tag()) ) { if( input.tag.title_is("MOTIONCV") ) { config.block_count = input.tag.get_property("BLOCK_COUNT", config.block_count); config.global_positions = input.tag.get_property("GLOBAL_POSITIONS", config.global_positions); config.rotate_positions = input.tag.get_property("ROTATE_POSITIONS", config.rotate_positions); config.global_block_w = input.tag.get_property("GLOBAL_BLOCK_W", config.global_block_w); config.global_block_h = input.tag.get_property("GLOBAL_BLOCK_H", config.global_block_h); config.rotation_block_w = input.tag.get_property("ROTATION_BLOCK_W", config.rotation_block_w); config.rotation_block_h = input.tag.get_property("ROTATION_BLOCK_H", config.rotation_block_h); config.block_x = input.tag.get_property("BLOCK_X", config.block_x); config.block_y = input.tag.get_property("BLOCK_Y", config.block_y); config.global_range_w = input.tag.get_property("GLOBAL_RANGE_W", config.global_range_w); config.global_range_h = input.tag.get_property("GLOBAL_RANGE_H", config.global_range_h); config.rotation_range = input.tag.get_property("ROTATION_RANGE", config.rotation_range); config.magnitude = input.tag.get_property("MAGNITUDE", config.magnitude); config.return_speed = input.tag.get_property("RETURN_SPEED", config.return_speed); config.mode1 = input.tag.get_property("MODE1", config.mode1); config.global = input.tag.get_property("GLOBAL", config.global); config.rotate = input.tag.get_property("ROTATE", config.rotate); config.addtrackedframeoffset = input.tag.get_property("ADDTRACKEDFRAMEOFFSET", config.addtrackedframeoffset); input.tag.get_property("TRACKING_FILE", config.tracking_file); config.mode2 = input.tag.get_property("MODE2", config.mode2); config.draw_vectors = input.tag.get_property("DRAW_VECTORS", config.draw_vectors); config.mode3 = input.tag.get_property("MODE3", config.mode3); config.track_frame = input.tag.get_property("TRACK_FRAME", config.track_frame); config.bottom_is_master = input.tag.get_property("BOTTOM_IS_MASTER", config.bottom_is_master); config.horizontal_only = input.tag.get_property("HORIZONTAL_ONLY", config.horizontal_only); config.vertical_only = input.tag.get_property("VERTICAL_ONLY", config.vertical_only); } } config.boundaries(); } void MotionCVMain::allocate_temp(int w, int h, int color_model) { if( temp_frame && ( temp_frame->get_w() != w || temp_frame->get_h() != h ) ) { delete temp_frame; temp_frame = 0; } if( !temp_frame ) temp_frame = new VFrame(w, h, color_model, 0); } void MotionCVMain::process_global() { if( !engine ) engine = new MotionCVScan(this, PluginClient::get_project_smp() + 1, PluginClient::get_project_smp() + 1); // Get the current motion vector between the previous and current frame engine->scan_frame(current_global_ref, prev_global_ref); current_dx = (engine->dx_result += dx_offset); current_dy = (engine->dy_result += dy_offset); // Write results if( config.mode2 == MotionCVConfig::SAVE ) { save_dx = engine->dx_result; save_dy = engine->dy_result; } // Add current motion vector to accumulation vector. if( config.mode3 != MotionCVConfig::TRACK_SINGLE ) { // Retract over time total_dx = (int64_t) total_dx *(100 - config.return_speed) / 100; total_dy = (int64_t) total_dy *(100 - config.return_speed) / 100; total_dx += engine->dx_result; total_dy += engine->dy_result; } // Make accumulation vector current else { total_dx = engine->dx_result; total_dy = engine->dy_result; } // Clamp accumulation vector if( config.magnitude < 100 ) { int block_x_orig = (int64_t)(config.block_x * current_global_ref->get_w() / 100); int block_y_orig = (int64_t)(config.block_y * current_global_ref->get_h() / 100); int max_block_x = (int64_t) (current_global_ref->get_w() - block_x_orig) * OVERSAMPLE * config.magnitude / 100; int max_block_y = (int64_t) (current_global_ref->get_h() - block_y_orig) * OVERSAMPLE * config.magnitude / 100; int min_block_x = (int64_t) -block_x_orig * OVERSAMPLE * config.magnitude / 100; int min_block_y = (int64_t) -block_y_orig * OVERSAMPLE * config.magnitude / 100; CLAMP(total_dx, min_block_x, max_block_x); CLAMP(total_dy, min_block_y, max_block_y); } #ifdef DEBUG printf("MotionCVMain::process_global 2 total_dx=%.02f total_dy=%.02f\n", (float)total_dx / OVERSAMPLE, (float)total_dy / OVERSAMPLE); #endif if( config.mode3 != MotionCVConfig::TRACK_SINGLE && !config.rotate ) { // Transfer current reference frame to previous reference frame and update // counter. Must wait for rotate to compare. prev_global_ref->copy_from(current_global_ref); previous_frame_number = get_source_position(); } // Decide what to do with target based on requested operation int interpolation = NEAREST_NEIGHBOR; float dx = 0, dy = 0; switch( config.mode1 ) { case MotionCVConfig::NOTHING: global_target_dst->copy_from(global_target_src); break; case MotionCVConfig::TRACK_PIXEL: interpolation = NEAREST_NEIGHBOR; dx = (int)(total_dx / OVERSAMPLE); dy = (int)(total_dy / OVERSAMPLE); break; case MotionCVConfig::STABILIZE_PIXEL: interpolation = NEAREST_NEIGHBOR; dx = -(int)(total_dx / OVERSAMPLE); dy = -(int)(total_dy / OVERSAMPLE); break; break; case MotionCVConfig::TRACK: interpolation = CUBIC_LINEAR; dx = (float)total_dx / OVERSAMPLE; dy = (float)total_dy / OVERSAMPLE; break; case MotionCVConfig::STABILIZE: interpolation = CUBIC_LINEAR; dx = -(float)total_dx / OVERSAMPLE; dy = -(float)total_dy / OVERSAMPLE; break; } if( config.mode1 != MotionCVConfig::NOTHING ) { if( !overlayer ) overlayer = new OverlayFrame(PluginClient::get_project_smp() + 1); global_target_dst->clear_frame(); overlayer->overlay(global_target_dst, global_target_src, 0, 0, global_target_src->get_w(), global_target_src->get_h(), dx, dy, (float)global_target_src->get_w() + dx, (float)global_target_src->get_h() + dy, 1, TRANSFER_REPLACE, interpolation); } } void MotionCVMain::process_rotation() { int block_x, block_y; // Convert the previous global reference into the previous rotation reference. // Convert global target destination into rotation target source. if( config.global ) { if( !overlayer ) overlayer = new OverlayFrame(PluginClient::get_project_smp() + 1); float dx, dy; if( config.mode3 == MotionCVConfig::TRACK_SINGLE ) { dx = (float)total_dx / OVERSAMPLE; dy = (float)total_dy / OVERSAMPLE; } else { dx = (float)current_dx / OVERSAMPLE; dy = (float)current_dy / OVERSAMPLE; } prev_rotate_ref->clear_frame(); overlayer->overlay(prev_rotate_ref, prev_global_ref, 0, 0, prev_global_ref->get_w(), prev_global_ref->get_h(), dx, dy, (float)prev_global_ref->get_w() + dx, (float)prev_global_ref->get_h() + dy, 1, TRANSFER_REPLACE, CUBIC_LINEAR); // Pivot is destination global position block_x = (int)(prev_rotate_ref->get_w() * config.block_x / 100 + (float)total_dx / OVERSAMPLE); block_y = (int)(prev_rotate_ref->get_h() * config.block_y / 100 + (float)total_dy / OVERSAMPLE); // Use the global target output as the rotation target input rotate_target_src->copy_from(global_target_dst); // Transfer current reference frame to previous reference frame for global. if( config.mode3 != MotionCVConfig::TRACK_SINGLE ) { prev_global_ref->copy_from(current_global_ref); previous_frame_number = get_source_position(); } } // Pivot is fixed else { block_x = (int)(prev_rotate_ref->get_w() * config.block_x / 100); block_y = (int)(prev_rotate_ref->get_h() * config.block_y / 100); } // Get rotation if( !motion_rotate ) motion_rotate = new RotateCVScan(this, get_project_smp() + 1, get_project_smp() + 1); current_angle = motion_rotate->scan_frame(prev_rotate_ref, current_rotate_ref, block_x, block_y); // Add current rotation to accumulation if( config.mode3 != MotionCVConfig::TRACK_SINGLE ) { // Retract over time total_angle = total_angle * (100 - config.return_speed) / 100; total_angle += current_angle; if( !config.global ) { // Transfer current reference frame to previous reference frame and update // counter. prev_rotate_ref->copy_from(current_rotate_ref); previous_frame_number = get_source_position(); } } else { total_angle = current_angle; } #ifdef DEBUG printf("MotionCVMain::process_rotation total_angle=%f\n", total_angle); #endif // Calculate rotation parameters based on requested operation float angle = 0; switch( config.mode1 ) { case MotionCVConfig::NOTHING: rotate_target_dst->copy_from(rotate_target_src); break; case MotionCVConfig::TRACK: case MotionCVConfig::TRACK_PIXEL: angle = total_angle; break; case MotionCVConfig::STABILIZE: case MotionCVConfig::STABILIZE_PIXEL: angle = -total_angle; break; } if( config.mode1 != MotionCVConfig::NOTHING ) { if( !rotate_engine ) rotate_engine = new AffineEngine( PluginClient::get_project_smp() + 1, PluginClient::get_project_smp() + 1); rotate_target_dst->clear_frame(); // Determine pivot based on a number of factors. switch( config.mode1 ) { case MotionCVConfig::TRACK: case MotionCVConfig::TRACK_PIXEL: // Use destination of global tracking. rotate_engine->set_pivot(block_x, block_y); break; case MotionCVConfig::STABILIZE: case MotionCVConfig::STABILIZE_PIXEL: if( config.global ) { // Use origin of global stabilize operation rotate_engine->set_pivot( (int)(rotate_target_dst->get_w() * config.block_x / 100), (int)(rotate_target_dst->get_h() * config.block_y / 100)); } // Use origin else { rotate_engine->set_pivot(block_x, block_y); } break; } rotate_engine->rotate(rotate_target_dst, rotate_target_src, angle); // overlayer->overlay(rotate_target_dst, prev_rotate_ref, // 0, 0, prev_rotate_ref->get_w(), prev_rotate_ref->get_h(), // 0, 0, prev_rotate_ref->get_w(), prev_rotate_ref->get_h(), // 1, TRANSFER_NORMAL, CUBIC_LINEAR); // overlayer->overlay(rotate_target_dst, current_rotate_ref, // 0, 0, prev_rotate_ref->get_w(), prev_rotate_ref->get_h(), // 0, 0, prev_rotate_ref->get_w(), prev_rotate_ref->get_h(), // 1, TRANSFER_NORMAL, CUBIC_LINEAR); } } int MotionCVMain::process_buffer(VFrame ** frame, int64_t start_position, double frame_rate) { int prev_config_mode2 = config.mode2; int need_reconfigure = load_configuration(); int color_model = frame[0]->get_color_model(); w = frame[0]->get_w(); h = frame[0]->get_h(); #ifdef DEBUG printf("MotionCVMain::process_buffer 1 start_position=%jd\n", start_position); #endif // Calculate the source and destination pointers for each of the operations. // Get the layer to track motion in. reference_layer = config.bottom_is_master ? PluginClient::total_in_buffers - 1 : 0; // Get the layer to apply motion in. target_layer = config.bottom_is_master ? 0 : PluginClient::total_in_buffers - 1; output_frame = frame[target_layer]; // Get the position of previous reference frame. int64_t actual_previous_number; // Skip if match frame not available int skip_current = 0; if( config.mode3 == MotionCVConfig::TRACK_SINGLE ) { actual_previous_number = config.track_frame; if( get_direction() == PLAY_REVERSE ) actual_previous_number++; if( actual_previous_number == start_position ) skip_current = 1; } else { actual_previous_number = start_position; if( get_direction() == PLAY_FORWARD ) { actual_previous_number--; if( actual_previous_number < get_source_start() ) skip_current = 1; else { KeyFrame *keyframe = get_prev_keyframe(start_position, 1); if( keyframe->position > 0 && actual_previous_number < keyframe->position ) skip_current = 1; } } else { actual_previous_number++; if( actual_previous_number >= get_source_start() + get_total_len() ) skip_current = 1; else { KeyFrame *keyframe = get_next_keyframe(start_position, 1); if( keyframe->position > 0 && actual_previous_number >= keyframe->position ) skip_current = 1; } } // Only count motion since last keyframe } if( !config.global &&!config.rotate ) skip_current = 1; //printf("process_realtime: %jd %d %jd %jd\n", start_position, // skip_current, previous_frame_number, actual_previous_number); if( prev_config_mode2 != MotionCVConfig::SAVE && config.mode2 == MotionCVConfig::SAVE ) { reset_cache_file(); char save_file[BCTEXTLEN]; snprintf(save_file, sizeof(save_file), "%s.sav", config.tracking_file); #ifdef DEBUG printf("MotionCVMain::process_buffer 2 rename tracking file: %s to %s\n", config.tracking_file, save_file); #endif ::rename(config.tracking_file, save_file); } else if( !cache_file[0] || active_key > start_position ) reset_cache_file(); // Load match frame and reset vectors int need_reload = !skip_current && (previous_frame_number != actual_previous_number || need_reconfigure); if( need_reload ) { total_dx = total_dy = 0; total_angle = 0; previous_frame_number = actual_previous_number; } if( skip_current ) { total_dx = total_dy = 0; current_dx = current_dy = 0; total_angle = current_angle = 0; } // Get the global pointers. Here we walk through the sequence of events. if( config.global ) { // Assume global only. Global reads previous frame and compares // with current frame to get the current translation. // The center of the search area is fixed in compensate mode or // the user value + the accumulation vector in track mode. if( !prev_global_ref ) prev_global_ref = new VFrame(w, h, color_model); if( !current_global_ref ) current_global_ref = new VFrame(w, h, color_model); // Global loads the current target frame into the src and // writes it to the dst frame with desired translation. if( !global_target_src ) global_target_src = new VFrame(w, h, color_model); if( !global_target_dst ) global_target_dst = new VFrame(w, h, color_model); // Load the global frames if( need_reload ) { read_frame(prev_global_ref, reference_layer, previous_frame_number, frame_rate, 0); } read_frame(current_global_ref, reference_layer, start_position, frame_rate, 0); read_frame(global_target_src, target_layer, start_position, frame_rate, 0); // Global followed by rotate if( config.rotate ) { // Must translate the previous global reference by the current global // accumulation vector to match the current global reference. // The center of the search area is always the user value + the accumulation // vector. if( !prev_rotate_ref ) prev_rotate_ref = new VFrame(w, h, color_model); // The current global reference is the current rotation reference. if( !current_rotate_ref ) current_rotate_ref = new VFrame(w, h, color_model); current_rotate_ref->copy_from(current_global_ref); // The global target destination is copied to the rotation target source // then written to the rotation output with rotation. // The pivot for the rotation is the center of the search area // if we're tracking. // The pivot is fixed to the user position if we're compensating. if( !rotate_target_src ) rotate_target_src = new VFrame(w, h, color_model); if( !rotate_target_dst ) rotate_target_dst = new VFrame(w, h, color_model); } } // Rotation only else if( config.rotate ) { // Rotation reads the previous reference frame and compares it with current // reference frame. if( !prev_rotate_ref ) prev_rotate_ref = new VFrame(w, h, color_model); if( !current_rotate_ref ) current_rotate_ref = new VFrame(w, h, color_model); // Rotation loads target frame to temporary, rotates it, and writes it to the // target frame. The pivot is always fixed. if( !rotate_target_src ) rotate_target_src = new VFrame(w, h, color_model); if( !rotate_target_dst ) rotate_target_dst = new VFrame(w, h, color_model); // Load the rotate frames if( need_reload ) { read_frame(prev_rotate_ref, reference_layer, previous_frame_number, frame_rate, 0); } read_frame(current_rotate_ref, reference_layer, start_position, frame_rate, 0); read_frame(rotate_target_src, target_layer, start_position, frame_rate, 0); } dx_offset = 0; dy_offset = 0; if( config.mode2 == MotionCVConfig::LOAD ) { if( config.addtrackedframeoffset ) { if( config.track_frame != tracking_frame ) { tracking_frame = config.track_frame; int64_t no; int dx, dy; float dt; if( !get_cache_line(tracking_frame) && sscanf(cache_line, "%jd %d %d %f", &no, &dx, &dy, &dt) == 4 ) { dx_offset = dx; dy_offset = dy; } else { eprintf("no offset data frame %jd\n", tracking_frame); } } } else tracking_frame = -1; } if( !skip_current ) { load_ok = 0; if( config.mode2 == MotionCVConfig::LOAD || config.mode2 == MotionCVConfig::SAVE ) { int64_t no; int dx, dy; float dt; int64_t frame_no = get_source_position(); // Load result from disk if( !get_cache_line(frame_no) && sscanf(cache_line, "%jd %d %d %f", &no, &dx, &dy, &dt) == 4 ) { load_ok = 1; load_dx = dx; load_dy = dy; load_dt = dt; } else { #ifdef DEBUG printf("MotionCVMain::process_buffer: no tracking data frame %jd\n", frame_no); #endif } } // Get position change from previous frame to current frame if( config.global ) process_global(); // Get rotation change from previous frame to current frame if( config.rotate ) process_rotation(); //frame[target_layer]->copy_from(prev_rotate_ref); //frame[target_layer]->copy_from(current_rotate_ref); // write results to disk if( config.mode2 == MotionCVConfig::SAVE ) { char line[BCSTRLEN]; int64_t frame_no = get_source_position(); snprintf(line, sizeof(line), "%jd %d %d %f\n", frame_no, save_dx, save_dy, save_dt); put_cache_line(line); } // Transfer the relevant target frame to the output if( config.rotate ) { frame[target_layer]->copy_from(rotate_target_dst); } else { frame[target_layer]->copy_from(global_target_dst); } } // Read the target destination directly else { read_frame(frame[target_layer], target_layer, start_position, frame_rate, 0); } if( config.draw_vectors ) { draw_vectors(frame[target_layer]); } #ifdef DEBUG printf("MotionCVMain::process_buffer 100\n"); #endif return 0; } void MotionCVMain::clamp_scan(int w, int h, int *block_x1, int *block_y1, int *block_x2, int *block_y2, int *scan_x1, int *scan_y1, int *scan_x2, int *scan_y2, int use_absolute) { // printf("MotionCVMain::clamp_scan 1 w=%d h=%d block=%d %d %d" // " %d scan=%d %d %d %d absolute=%d\n", // w, h, *block_x1, *block_y1, *block_x2, *block_y2, // *scan_x1, *scan_y1, *scan_x2, *scan_y2, use_absolute); if( use_absolute ) { // scan is always out of range before block. if( *scan_x1 < 0 ) { int difference = -*scan_x1; *block_x1 += difference; *scan_x1 = 0; } if( *scan_y1 < 0 ) { int difference = -*scan_y1; *block_y1 += difference; *scan_y1 = 0; } if( *scan_x2 > w ) { int difference = *scan_x2 - w; *block_x2 -= difference; *scan_x2 -= difference; } if( *scan_y2 > h ) { int difference = *scan_y2 - h; *block_y2 -= difference; *scan_y2 -= difference; } CLAMP(*scan_x1, 0, w); CLAMP(*scan_y1, 0, h); CLAMP(*scan_x2, 0, w); CLAMP(*scan_y2, 0, h); } else { if( *scan_x1 < 0 ) { int difference = -*scan_x1; *block_x1 += difference; *scan_x2 += difference; *scan_x1 = 0; } if( *scan_y1 < 0 ) { int difference = -*scan_y1; *block_y1 += difference; *scan_y2 += difference; *scan_y1 = 0; } if( *scan_x2 - *block_x1 + *block_x2 > w ) { int difference = *scan_x2 - *block_x1 + *block_x2 - w; *block_x2 -= difference; } if( *scan_y2 - *block_y1 + *block_y2 > h ) { int difference = *scan_y2 - *block_y1 + *block_y2 - h; *block_y2 -= difference; } // CLAMP(*scan_x1, 0, w - (*block_x2 - *block_x1)); // CLAMP(*scan_y1, 0, h - (*block_y2 - *block_y1)); // CLAMP(*scan_x2, 0, w - (*block_x2 - *block_x1)); // CLAMP(*scan_y2, 0, h - (*block_y2 - *block_y1)); } // Sanity checks which break the calculation but should never happen if the // center of the block is inside the frame. CLAMP(*block_x1, 0, w); CLAMP(*block_x2, 0, w); CLAMP(*block_y1, 0, h); CLAMP(*block_y2, 0, h); // printf("MotionCVMain::clamp_scan 2 w=%d h=%d" // " block=%d %d %d %d scan=%d %d %d %d absolute=%d\n", // w, h, *block_x1, *block_y1, *block_x2, *block_y2, // *scan_x1, *scan_y1, *scan_x2, *scan_y2, use_absolute); } void MotionCVMain::draw_vectors(VFrame *frame) { int w = frame->get_w(), h = frame->get_h(); int global_x1, global_y1, global_x2, global_y2; int block_x, block_y, block_w, block_h; int block_x1, block_y1, block_x2, block_y2; int block_x3, block_y3, block_x4, block_y4; int search_x1, search_y1, search_x2, search_y2; int search_w, search_h; if( config.global ) { // Get vector // Start of vector is center of previous block. // End of vector is total accumulation. if( config.mode3 == MotionCVConfig::TRACK_SINGLE ) { global_x1 = (int64_t) (config.block_x * w / 100); global_y1 = (int64_t) (config.block_y * h / 100); global_x2 = global_x1 + total_dx / OVERSAMPLE; global_y2 = global_y1 + total_dy / OVERSAMPLE; //printf("MotionCVMain::draw_vectors %d %d %d %d %d %d\n", // total_dx, total_dy, global_x1, global_y1, global_x2, global_y2); } // Start of vector is center of previous block. // End of vector is current change. else if( config.mode3 == MotionCVConfig::PREVIOUS_SAME_BLOCK ) { global_x1 = (int64_t) (config.block_x * w / 100); global_y1 = (int64_t) (config.block_y * h / 100); global_x2 = global_x1 + current_dx / OVERSAMPLE; global_y2 = global_y1 + current_dy / OVERSAMPLE; } else { global_x1 = (int64_t) (config.block_x * w / 100 + (total_dx - current_dx) / OVERSAMPLE); global_y1 = (int64_t) (config.block_y * h / 100 + (total_dy - current_dy) / OVERSAMPLE); global_x2 = (int64_t) (config.block_x * w / 100 + total_dx / OVERSAMPLE); global_y2 = (int64_t) (config.block_y * h / 100 + total_dy / OVERSAMPLE); } block_x = global_x1; block_y = global_y1; block_w = config.global_block_w * w / 100; block_h = config.global_block_h * h / 100; block_x1 = block_x - block_w / 2; block_y1 = block_y - block_h / 2; block_x2 = block_x + block_w / 2; block_y2 = block_y + block_h / 2; search_w = config.global_range_w * w / 100; search_h = config.global_range_h * h / 100; search_x1 = block_x1 - search_w / 2; search_y1 = block_y1 - search_h / 2; search_x2 = block_x2 + search_w / 2; search_y2 = block_y2 + search_h / 2; // printf("MotionCVMain::draw_vectors %d %d %d %d %d %d %d %d %d %d %d %d\n", // global_x1, global_y1, block_w, block_h, block_x1, block_y1, block_x2, block_y2, // search_x1, search_y1, search_x2, search_y2); clamp_scan(w, h, &block_x1, &block_y1, &block_x2, &block_y2, &search_x1, &search_y1, &search_x2, &search_y2, 1); // Vector draw_arrow(frame, global_x1, global_y1, global_x2, global_y2); // Macroblock draw_line(frame, block_x1, block_y1, block_x2, block_y1); draw_line(frame, block_x2, block_y1, block_x2, block_y2); draw_line(frame, block_x2, block_y2, block_x1, block_y2); draw_line(frame, block_x1, block_y2, block_x1, block_y1); // Search area draw_line(frame, search_x1, search_y1, search_x2, search_y1); draw_line(frame, search_x2, search_y1, search_x2, search_y2); draw_line(frame, search_x2, search_y2, search_x1, search_y2); draw_line(frame, search_x1, search_y2, search_x1, search_y1); // Block should be endpoint of motion if( config.rotate ) { block_x = global_x2; block_y = global_y2; } } else { block_x = (int64_t) (config.block_x * w / 100); block_y = (int64_t) (config.block_y * h / 100); } block_w = config.rotation_block_w * w / 100; block_h = config.rotation_block_h * h / 100; if( config.rotate ) { float angle = total_angle * 2 * M_PI / 360; double base_angle1 = atan((float)block_h / block_w); double base_angle2 = atan((float)block_w / block_h); double target_angle1 = base_angle1 + angle; double target_angle2 = base_angle2 + angle; double radius = sqrt(block_w * block_w + block_h * block_h) / 2; block_x1 = (int)(block_x - cos(target_angle1) * radius); block_y1 = (int)(block_y - sin(target_angle1) * radius); block_x2 = (int)(block_x + sin(target_angle2) * radius); block_y2 = (int)(block_y - cos(target_angle2) * radius); block_x3 = (int)(block_x - sin(target_angle2) * radius); block_y3 = (int)(block_y + cos(target_angle2) * radius); block_x4 = (int)(block_x + cos(target_angle1) * radius); block_y4 = (int)(block_y + sin(target_angle1) * radius); draw_line(frame, block_x1, block_y1, block_x2, block_y2); draw_line(frame, block_x2, block_y2, block_x4, block_y4); draw_line(frame, block_x4, block_y4, block_x3, block_y3); draw_line(frame, block_x3, block_y3, block_x1, block_y1); // Center if( !config.global ) { draw_line(frame, block_x, block_y - 5, block_x, block_y + 6); draw_line(frame, block_x - 5, block_y, block_x + 6, block_y); } } } MotionCvVVFrame::MotionCvVVFrame(VFrame *vfrm, int n) : VFrame(vfrm->get_data(), -1, vfrm->get_y()-vfrm->get_data(), vfrm->get_u()-vfrm->get_data(), vfrm->get_v()-vfrm->get_data(), vfrm->get_w(), vfrm->get_h(), vfrm->get_color_model(), vfrm->get_bytes_per_line()) { this->n = n; } int MotionCvVVFrame::draw_pixel(int x, int y) { VFrame::draw_pixel(x+0, y+0); for( int i=1; iget_w(), ih = frame->get_h(); int mx = iw > ih ? iw : ih; int n = mx/800 + 1; MotionCvVVFrame vfrm(frame, n); vfrm.set_pixel_color(WHITE); int m = 2; while( m < n ) m <<= 1; vfrm.set_stiple(2*m); vfrm.draw_line(x1,y1, x2,y2); } #define ARROW_SIZE 10 void MotionCVMain::draw_arrow(VFrame *frame, int x1, int y1, int x2, int y2) { double angle = atan((float)(y2 - y1) / (float)(x2 - x1)); double angle1 = angle + (float)145 / 360 * 2 * 3.14159265; double angle2 = angle - (float)145 / 360 * 2 * 3.14159265; int x3, y3, x4, y4; if( x2 < x1 ) { x3 = x2 - (int)(ARROW_SIZE * cos(angle1)); y3 = y2 - (int)(ARROW_SIZE * sin(angle1)); x4 = x2 - (int)(ARROW_SIZE * cos(angle2)); y4 = y2 - (int)(ARROW_SIZE * sin(angle2)); } else { x3 = x2 + (int)(ARROW_SIZE * cos(angle1)); y3 = y2 + (int)(ARROW_SIZE * sin(angle1)); x4 = x2 + (int)(ARROW_SIZE * cos(angle2)); y4 = y2 + (int)(ARROW_SIZE * sin(angle2)); } // Main vector draw_line(frame, x1, y1, x2, y2); // draw_line(frame, x1, y1 + 1, x2, y2 + 1); // Arrow line if( abs(y2 - y1) || abs(x2 - x1) ) draw_line(frame, x2, y2, x3, y3); // draw_line(frame, x2, y2 + 1, x3, y3 + 1); // Arrow line if( abs(y2 - y1) || abs(x2 - x1) ) draw_line(frame, x2, y2, x4, y4); // draw_line(frame, x2, y2 + 1, x4, y4 + 1); } #define ABS_DIFF(model, type, temp_type, multiplier, components) \ case model: { \ temp_type result_temp = 0; \ for( int i = 0; i < h; i++ ) { \ type *prev_row = (type*)prev_ptr; \ type *current_row = (type*)current_ptr; \ for( int j = 0; j < w; j++ ) { \ for( int k = 0; k < 3; k++ ) { \ temp_type difference; \ difference = *prev_row++ - *current_row++; \ if( difference < 0 ) \ result_temp -= difference; \ else \ result_temp += difference; \ } \ if( components == 4 ) { \ prev_row++; \ current_row++; \ } \ } \ prev_ptr += row_bytes; \ current_ptr += row_bytes; \ } \ result = (int64_t)(result_temp * multiplier); \ } break int64_t MotionCVMain::abs_diff(unsigned char *prev_ptr, unsigned char *current_ptr, int row_bytes, int w, int h, int color_model) { int64_t result = 0; switch( color_model ) { ABS_DIFF(BC_RGB888,unsigned char, int64_t, 1, 3); ABS_DIFF(BC_RGBA8888,unsigned char, int64_t, 1, 4); ABS_DIFF(BC_RGB_FLOAT,float, double, 0x10000, 3); ABS_DIFF(BC_RGBA_FLOAT,float, double, 0x10000, 4); ABS_DIFF(BC_YUV888,unsigned char, int64_t, 1, 3); ABS_DIFF(BC_YUVA8888,unsigned char, int64_t, 1, 4); ABS_DIFF(BC_YUV161616,uint16_t, int64_t, 1, 3); ABS_DIFF(BC_YUVA16161616,uint16_t, int64_t, 1, 4); } return result; } #define ABS_DIFF_SUB(model, type, temp_type, multiplier, components) \ case model: { \ temp_type result_temp = 0; \ temp_type y2_fraction = sub_y * 0x100 / OVERSAMPLE; \ temp_type y1_fraction = 0x100 - y2_fraction; \ temp_type x2_fraction = sub_x * 0x100 / OVERSAMPLE; \ temp_type x1_fraction = 0x100 - x2_fraction; \ for( int i = 0; i < h_sub; i++ ) { \ type *prev_row1 = (type*)prev_ptr; \ type *prev_row2 = (type*)prev_ptr + components; \ type *prev_row3 = (type*)(prev_ptr + row_bytes); \ type *prev_row4 = (type*)(prev_ptr + row_bytes) + components; \ type *current_row = (type*)current_ptr; \ for( int j = 0; j < w_sub; j++ ) { \ for( int k = 0; k < 3; k++ ) { \ temp_type difference; \ temp_type prev_value = \ (*prev_row1++ * x1_fraction * y1_fraction + \ *prev_row2++ * x2_fraction * y1_fraction + \ *prev_row3++ * x1_fraction * y2_fraction + \ *prev_row4++ * x2_fraction * y2_fraction) / \ 0x100 / 0x100; \ temp_type current_value = *current_row++; \ difference = prev_value - current_value; \ if( difference < 0 ) \ result_temp -= difference; \ else \ result_temp += difference; \ } \ \ if( components == 4 ) { \ prev_row1++; prev_row2++; \ prev_row3++; prev_row4++; \ current_row++; \ } \ } \ prev_ptr += row_bytes; \ current_ptr += row_bytes; \ } \ result = (int64_t)(result_temp * multiplier); \ } break int64_t MotionCVMain::abs_diff_sub(unsigned char *prev_ptr, unsigned char *current_ptr, int row_bytes, int w, int h, int color_model, int sub_x, int sub_y) { int h_sub = h - 1; int w_sub = w - 1; int64_t result = 0; switch( color_model ) { ABS_DIFF_SUB(BC_RGB888,unsigned char, int64_t, 1, 3); ABS_DIFF_SUB(BC_RGBA8888,unsigned char, int64_t, 1, 4); ABS_DIFF_SUB(BC_RGB_FLOAT,float, double, 0x10000, 3); ABS_DIFF_SUB(BC_RGBA_FLOAT,float, double, 0x10000, 4); ABS_DIFF_SUB(BC_YUV888,unsigned char, int64_t, 1, 3); ABS_DIFF_SUB(BC_YUVA8888,unsigned char, int64_t, 1, 4); ABS_DIFF_SUB(BC_YUV161616,uint16_t, int64_t, 1, 3); ABS_DIFF_SUB(BC_YUVA16161616,uint16_t, int64_t, 1, 4); } return result; } int MotionCVMain::open_cache_file() { if( cache_fp ) return 0; if( !cache_file[0] ) return 1; if( !(cache_fp = fopen(cache_file, "r")) ) return 1; return 0; } void MotionCVMain::close_cache_file() { if( !cache_fp ) return; fclose(cache_fp); cache_fp = 0; cache_key = -1; tracking_frame = -1; } int MotionCVMain::load_cache_line() { cache_key = -1; if( open_cache_file() ) return 1; if( !fgets(cache_line, sizeof(cache_line), cache_fp) ) return 1; cache_key = strtol(cache_line, 0, 0); return 0; } int MotionCVMain::get_cache_line(int64_t key) { if( cache_key == key ) return 0; if( open_cache_file() ) return 1; if( cache_key >= 0 && key > cache_key ) { if( load_cache_line() ) return 1; if( cache_key == key ) return 0; if( cache_key > key ) return 1; } // binary search file fseek(cache_fp, 0, SEEK_END); int64_t l = -1, r = ftell(cache_fp); while( (r - l) > 1 ) { int64_t m = (l + r) / 2; fseek(cache_fp, m, SEEK_SET); if( m > 0 && !fgets(cache_line, sizeof(cache_line), cache_fp) ) return -1; if( !load_cache_line() ) { if( cache_key == key ) return 0; if( cache_key < key ) { l = m; continue; } } r = m; } return 1; } int MotionCVMain::locate_cache_line(int64_t key) { int ret = 1; if( key < 0 || !(ret=get_cache_line(key)) || ( cache_key >= 0 && cache_key < key ) ) ret = load_cache_line(); return ret; } int MotionCVMain::put_cache_line(const char *line) { int64_t key = strtol(line, 0, 0); if( key == active_key ) return 1; if( !active_fp ) { close_cache_file(); snprintf(cache_file, sizeof(cache_file), "%s.bak", config.tracking_file); ::rename(config.tracking_file, cache_file); if( !(active_fp = fopen(config.tracking_file, "w")) ) { perror(config.tracking_file); fprintf(stderr, "err writing key %jd\n", key); return -1; } active_key = -1; } if( active_key < key ) { locate_cache_line(active_key); while( cache_key >= 0 && key >= cache_key ) { if( key > cache_key ) fputs(cache_line, active_fp); load_cache_line(); } } active_key = key; fputs(line, active_fp); fflush(active_fp); return 0; } void MotionCVMain::reset_cache_file() { if( active_fp ) { locate_cache_line(active_key); while( cache_key >= 0 ) { fputs(cache_line, active_fp); load_cache_line(); } close_cache_file(); ::remove(cache_file); fclose(active_fp); active_fp = 0; active_key = -1; } else close_cache_file(); strcpy(cache_file, config.tracking_file); } MotionCVScanPackage::MotionCVScanPackage() : LoadPackage() { valid = 1; } MotionCVScanUnit::MotionCVScanUnit(MotionCVScan *server, MotionCVMain *plugin) : LoadClient(server) { this->plugin = plugin; this->server = server; cache_lock = new Mutex("MotionCVScanUnit::cache_lock"); } MotionCVScanUnit::~MotionCVScanUnit() { delete cache_lock; } void MotionCVScanUnit::process_package(LoadPackage *package) { MotionCVScanPackage *pkg = (MotionCVScanPackage *) package; //int w = server->current_frame->get_w(); //int h = server->current_frame->get_h(); int color_model = server->current_frame->get_color_model(); int pixel_size = BC_CModels::calculate_pixelsize(color_model); int row_bytes = server->current_frame->get_bytes_per_line(); // Single pixel if( !server->subpixel ) { int search_x = pkg->scan_x1 + (pkg->pixel % (pkg->scan_x2 - pkg->scan_x1)); int search_y = pkg->scan_y1 + (pkg->pixel / (pkg->scan_x2 - pkg->scan_x1)); // Try cache pkg->difference1 = server->get_cache(search_x, search_y); if( pkg->difference1 < 0 ) { //printf("MotionCVScanUnit::process_package 1 %d %d\n", // search_x, search_y, pkg->block_x2 - pkg->block_x1, pkg->block_y2 - pkg->block_y1); // Pointers to first pixel in each block unsigned char *prev_ptr = server->previous_frame->get_rows()[search_y] + search_x * pixel_size; unsigned char *current_ptr = server->current_frame->get_rows()[pkg->block_y1] + pkg->block_x1 * pixel_size; // Scan block pkg->difference1 = plugin->abs_diff(prev_ptr, current_ptr, row_bytes, pkg->block_x2 - pkg->block_x1, pkg->block_y2 - pkg->block_y1, color_model); //printf("MotionCVScanUnit::process_package 2\n"); server->put_cache(search_x, search_y, pkg->difference1); } } // Sub pixel else { int sub_x = pkg->pixel % (OVERSAMPLE * 2 - 1) + 1; int sub_y = pkg->pixel / (OVERSAMPLE * 2 - 1) + 1; if( plugin->config.horizontal_only ) sub_y = 0; if( plugin->config.vertical_only ) sub_x = 0; int search_x = pkg->scan_x1 + sub_x / OVERSAMPLE; int search_y = pkg->scan_y1 + sub_y / OVERSAMPLE; sub_x %= OVERSAMPLE; sub_y %= OVERSAMPLE; unsigned char *prev_ptr = server->previous_frame->get_rows()[search_y] + search_x * pixel_size; unsigned char *current_ptr = server->current_frame->get_rows()[pkg->block_y1] + pkg->block_x1 * pixel_size; // With subpixel, there are two ways to compare each position, one by shifting // the previous frame and two by shifting the current frame. pkg->difference1 = plugin->abs_diff_sub(prev_ptr, current_ptr, row_bytes, pkg->block_x2 - pkg->block_x1, pkg->block_y2 - pkg->block_y1, color_model, sub_x, sub_y); pkg->difference2 = plugin->abs_diff_sub(current_ptr, prev_ptr, row_bytes, pkg->block_x2 - pkg->block_x1, pkg->block_y2 - pkg->block_y1, color_model, sub_x, sub_y); //printf("MotionCVScanUnit::process_package sub_x=%d sub_y=%d" // " search_x=%d search_y=%d diff1=%jd diff2=%jd\n", // sub_x, sub_y, search_x, search_y, pkg->difference1, pkg->difference2); } } int64_t MotionCVScanUnit::get_cache(int x, int y) { int64_t result = -1; cache_lock->lock("MotionCVScanUnit::get_cache"); for( int i = 0; i < cache.total; i++ ) { MotionCVScanCache *ptr = cache.values[i]; if( ptr->x == x && ptr->y == y ) { result = ptr->difference; break; } } cache_lock->unlock(); return result; } void MotionCVScanUnit::put_cache(int x, int y, int64_t difference) { MotionCVScanCache *ptr = new MotionCVScanCache(x, y, difference); cache_lock->lock("MotionCVScanUnit::put_cache"); cache.append(ptr); cache_lock->unlock(); } MotionCVScan::MotionCVScan(MotionCVMain *plugin, int total_clients, int total_packages) :LoadServer( //1, 1 total_clients, total_packages) { this->plugin = plugin; cache_lock = new Mutex("MotionCVScan::cache_lock"); } MotionCVScan::~MotionCVScan() { delete cache_lock; } void MotionCVScan::init_packages() { // Set package coords for( int i = 0; i < get_total_packages(); i++ ) { MotionCVScanPackage *pkg = (MotionCVScanPackage *) get_package(i); pkg->block_x1 = block_x1; pkg->block_x2 = block_x2; pkg->block_y1 = block_y1; pkg->block_y2 = block_y2; pkg->scan_x1 = scan_x1; pkg->scan_x2 = scan_x2; pkg->scan_y1 = scan_y1; pkg->scan_y2 = scan_y2; pkg->pixel = (int64_t) i *(int64_t) total_pixels / (int64_t) total_steps; pkg->difference1 = 0; pkg->difference2 = 0; pkg->dx = pkg->dy = 0; pkg->valid = 1; } } LoadClient *MotionCVScan::new_client() { return new MotionCVScanUnit(this, plugin); } LoadPackage *MotionCVScan::new_package() { return new MotionCVScanPackage; } void MotionCVScan::scan_frame(VFrame *previous_frame, VFrame *current_frame) { this->previous_frame = previous_frame; this->current_frame = current_frame; subpixel = 0; cache.remove_all_objects(); // Single macroblock int w = current_frame->get_w(); int h = current_frame->get_h(); // Initial search parameters int scan_w = w * plugin->config.global_range_w / 100; int scan_h = h * plugin->config.global_range_h / 100; int block_w = w * plugin->config.global_block_w / 100; int block_h = h * plugin->config.global_block_h / 100; // Location of block in previous frame block_x1 = (int)(w * plugin->config.block_x / 100 - block_w / 2); block_y1 = (int)(h * plugin->config.block_y / 100 - block_h / 2); block_x2 = (int)(w * plugin->config.block_x / 100 + block_w / 2); block_y2 = (int)(h * plugin->config.block_y / 100 + block_h / 2); // Offset to location of previous block. This offset needn't be very accurate // since it's the offset of the previous image and current image we want. if( plugin->config.mode3 == MotionCVConfig::TRACK_PREVIOUS ) { block_x1 += plugin->total_dx / OVERSAMPLE; block_y1 += plugin->total_dy / OVERSAMPLE; block_x2 += plugin->total_dx / OVERSAMPLE; block_y2 += plugin->total_dy / OVERSAMPLE; } skip = 0; switch( plugin->config.mode2 ) { // Don't calculate case MotionCVConfig::NO_CALCULATE: dx_result = dy_result = 0; skip = 1; break; case MotionCVConfig::LOAD: case MotionCVConfig::SAVE: if( plugin->load_ok ) { dx_result = plugin->load_dx; dy_result = plugin->load_dy; skip = 1; } break; // Scan from scratch default: skip = 0; break; } // Perform scan if( !skip ) { // Location of block in current frame int x_result = block_x1; int y_result = block_y1; //printf("MotionCVScan::scan_frame 1 %d %d %d %d %d %d %d %d\n", // block_x1 + block_w / 2, block_y1 + block_h / 2, // block_w, block_h, block_x1, block_y1, block_x2, block_y2); while( 1 ) { scan_x1 = x_result - scan_w / 2; scan_y1 = y_result - scan_h / 2; scan_x2 = x_result + scan_w / 2; scan_y2 = y_result + scan_h / 2; // Zero out requested values if( plugin->config.horizontal_only ) { scan_y1 = block_y1; scan_y2 = block_y1 + 1; } if( plugin->config.vertical_only ) { scan_x1 = block_x1; scan_x2 = block_x1 + 1; } // printf("MotionCVScan::scan_frame 1 %d %d %d %d %d %d %d %d\n", // block_x1, block_y1, block_x2, block_y2, scan_x1, scan_y1, scan_x2, scan_y2); // Clamp the block coords before the scan so we get useful scan coords. MotionCVMain::clamp_scan(w, h, &block_x1, &block_y1, &block_x2, &block_y2, &scan_x1, &scan_y1, &scan_x2, &scan_y2, 0); //printf("MotionCVScan::scan_frame 1\n" // " block_x1=%d block_y1=%d block_x2=%d block_y2=%d\n" // " scan_x1=%d scan_y1=%d scan_x2=%d scan_y2=%d\n" // " x_result=%d y_result=%d\n", // block_x1, block_y1, block_x2, block_y2, // scan_x1, scan_y1, scan_x2, scan_y2, x_result, y_result); // Give up if invalid coords. if( scan_y2 <= scan_y1 || scan_x2 <= scan_x1 || block_x2 <= block_x1 || block_y2 <= block_y1 ) break; // For subpixel, the top row and left column are skipped if( subpixel ) { if( plugin->config.horizontal_only || plugin->config.vertical_only ) { total_pixels = 4 * OVERSAMPLE * OVERSAMPLE - 4 * OVERSAMPLE; } else { total_pixels = 4 * OVERSAMPLE; } total_steps = total_pixels; set_package_count(total_steps); process_packages(); // Get least difference int64_t min_difference = -1; for(int i = 0; i < get_total_packages(); i++ ) { MotionCVScanPackage *pkg = (MotionCVScanPackage *) get_package(i); if( pkg->difference1 < min_difference || min_difference == -1 ) { min_difference = pkg->difference1; if( plugin->config. vertical_only ) x_result = scan_x1 * OVERSAMPLE; else x_result = scan_x1 * OVERSAMPLE + (pkg->pixel % (OVERSAMPLE * 2 - 1)) + 1; if( plugin->config. horizontal_only ) y_result = scan_y1 * OVERSAMPLE; else y_result = scan_y1 * OVERSAMPLE + (pkg->pixel / (OVERSAMPLE * 2 - 1)) + 1; // Fill in results dx_result = block_x1 * OVERSAMPLE - x_result; dy_result = block_y1 * OVERSAMPLE - y_result; } if( pkg->difference2 < min_difference ) { min_difference = pkg->difference2; if( plugin->config. vertical_only ) x_result = scan_x1 * OVERSAMPLE; else x_result = scan_x2 * OVERSAMPLE - ((pkg->pixel % (OVERSAMPLE * 2 - 1)) + 1); if( plugin->config. horizontal_only ) y_result = scan_y1 * OVERSAMPLE; else y_result = scan_y2 * OVERSAMPLE - ((pkg->pixel / (OVERSAMPLE * 2 - 1)) + 1); dx_result = block_x1 * OVERSAMPLE - x_result; dy_result = block_y1 * OVERSAMPLE - y_result; } } //printf("MotionCVScan::scan_frame 1 %d %d %d %d\n", block_x1, block_y1, x_result, y_result); break; } else { total_pixels = (scan_x2 - scan_x1) * (scan_y2 - scan_y1); total_steps = MIN(plugin->config.global_positions, total_pixels); set_package_count(total_steps); process_packages(); // Get least difference int64_t min_difference = -1; for( int i = 0; i < get_total_packages(); i++ ) { MotionCVScanPackage *pkg = (MotionCVScanPackage *) get_package(i); if( pkg->difference1 < min_difference || min_difference == -1 ) { min_difference = pkg->difference1; x_result = scan_x1 + (pkg->pixel % (scan_x2 - scan_x1)); y_result = scan_y1 + (pkg->pixel / (scan_x2 - scan_x1)); x_result *= OVERSAMPLE; y_result *= OVERSAMPLE; } } //printf("MotionCVScan::scan_frame 10 total_steps=%d total_pixels=%d subpixel=%d\n", // total_steps, total_pixels, subpixel); // //printf(" scan w=%d h=%d scan x1=%d y1=%d x2=%d y2=%d\n", // scan_w, scan_h, scan_x1, scan_y1, scan_x2, scan_y2); // // printf("MotionCVScan::scan_frame 2 block x1=%d y1=%d x2=%d y2=%d result x=%.2f y=%.2f\n", // block_x1, block_y1, block_x2, block_y2, (float)x_result / 4, (float)y_result / 4); // If a new search is required, rescale results back to pixels. if( total_steps >= total_pixels ) { // Single pixel accuracy reached. Now do exhaustive subpixel search. if( plugin->config.mode1 == MotionCVConfig::STABILIZE || plugin->config.mode1 == MotionCVConfig::TRACK || plugin->config.mode1 == MotionCVConfig::NOTHING ) { x_result /= OVERSAMPLE; y_result /= OVERSAMPLE; scan_w = scan_h = 2; subpixel = 1; } // Fill in results and quit else { dx_result = block_x1 * OVERSAMPLE - x_result; dy_result = block_y1 * OVERSAMPLE - y_result; break; } } // Reduce scan area and try again else { scan_w = (scan_x2 - scan_x1) / 2; scan_h = (scan_y2 - scan_y1) / 2; x_result /= OVERSAMPLE; y_result /= OVERSAMPLE; } } } // Add offsets from the "tracked single frame" dx_result = -dx_result; dy_result = -dy_result; } #ifdef DEBUG printf("MotionCVScan::scan_frame 10 dx=%.2f dy=%.2f\n", (float)this->dx_result / OVERSAMPLE, (float)this->dy_result / OVERSAMPLE); #endif } int64_t MotionCVScan::get_cache(int x, int y) { int64_t result = -1; cache_lock->lock("MotionCVScan::get_cache"); for( int i = 0; i < cache.total; i++ ) { MotionCVScanCache *ptr = cache.values[i]; if( ptr->x == x && ptr->y == y ) { result = ptr->difference; break; } } cache_lock->unlock(); return result; } void MotionCVScan::put_cache(int x, int y, int64_t difference) { MotionCVScanCache *ptr = new MotionCVScanCache(x, y, difference); cache_lock->lock("MotionCVScan::put_cache"); cache.append(ptr); cache_lock->unlock(); } MotionCVScanCache::MotionCVScanCache(int x, int y, int64_t difference) { this->x = x; this->y = y; this->difference = difference; } RotateCVScanPackage::RotateCVScanPackage() { } RotateCVScanUnit::RotateCVScanUnit(RotateCVScan *server, MotionCVMain *plugin) : LoadClient(server) { this->server = server; this->plugin = plugin; rotater = 0; temp = 0; } RotateCVScanUnit::~RotateCVScanUnit() { delete rotater; delete temp; } void RotateCVScanUnit::process_package(LoadPackage *package) { if( server->skip ) return; RotateCVScanPackage *pkg = (RotateCVScanPackage *) package; if( (pkg->difference = server->get_cache(pkg->angle)) < 0 ) { //printf("RotateCVScanUnit::process_package 1\n"); int color_model = server->previous_frame->get_color_model(); int pixel_size = BC_CModels::calculate_pixelsize(color_model); int row_bytes = server->previous_frame->get_bytes_per_line(); if( !rotater ) rotater = new AffineEngine(1, 1); if( !temp ) temp = new VFrame(server->previous_frame->get_w(), server->previous_frame->get_h(), color_model); // RotateCV original block size rotater->set_viewport(server->block_x1, server->block_y1, server->block_x2 - server->block_x1, server->block_y2 - server->block_y1); rotater->set_pivot(server->block_x, server->block_y); //pkg->angle = 2; rotater->rotate(temp, server->previous_frame, pkg->angle); // Clamp coordinates int x1 = server->scan_x; int y1 = server->scan_y; int x2 = x1 + server->scan_w; int y2 = y1 + server->scan_h; x2 = MIN(temp->get_w(), x2); y2 = MIN(temp->get_h(), y2); x2 = MIN(server->current_frame->get_w(), x2); y2 = MIN(server->current_frame->get_h(), y2); x1 = MAX(0, x1); y1 = MAX(0, y1); if( x2 > x1 && y2 > y1 ) { pkg->difference = plugin->abs_diff( temp->get_rows()[y1] + x1 * pixel_size, server->current_frame-> get_rows()[y1] + x1 * pixel_size, row_bytes, x2 - x1, y2 - y1, color_model); //printf("RotateCVScanUnit::process_package %d\n", __LINE__); server->put_cache(pkg->angle, pkg->difference); } //printf("RotateCVScanUnit::process_package 10 x=%d y=%d w=%d h=%d" // " block_x=%d block_y=%d angle=%f scan_w=%d scan_h=%d diff=%lld\n", // server->block_x1, server->block_y1, // server->block_x2 - server->block_x1, server->block_y2 - server->block_y1, // server->block_x, server->block_y, pkg->angle, server->scan_w, server->scan_h, // pkg->difference); } } RotateCVScan::RotateCVScan(MotionCVMain *plugin, int total_clients, int total_packages) :LoadServer( //1, 1 total_clients, total_packages) { this->plugin = plugin; cache_lock = new Mutex("RotateCVScan::cache_lock"); } RotateCVScan::~RotateCVScan() { delete cache_lock; } void RotateCVScan::init_packages() { for( int i = 0; i < get_total_packages(); i++ ) { RotateCVScanPackage *pkg = (RotateCVScanPackage *) get_package(i); pkg->angle = i * (scan_angle2 - scan_angle1) / (total_steps - 1) + scan_angle1; } } LoadClient *RotateCVScan::new_client() { return new RotateCVScanUnit(this, plugin); } LoadPackage *RotateCVScan::new_package() { return new RotateCVScanPackage; } float RotateCVScan::scan_frame(VFrame *previous_frame, VFrame *current_frame, int block_x, int block_y) { skip = 0; this->block_x = block_x; this->block_y = block_y; switch( plugin->config.mode2 ) { case MotionCVConfig::NO_CALCULATE: result = 0; skip = 1; break; case MotionCVConfig::LOAD: case MotionCVConfig::SAVE: if( plugin->load_ok ) { result = plugin->load_dt; skip = 1; } break; } this->previous_frame = previous_frame; this->current_frame = current_frame; int w = current_frame->get_w(); int h = current_frame->get_h(); int block_w = w * plugin->config.rotation_block_w / 100; int block_h = h * plugin->config.rotation_block_h / 100; if( this->block_x - block_w / 2 < 0 ) block_w = this->block_x * 2; if( this->block_y - block_h / 2 < 0 ) block_h = this->block_y * 2; if( this->block_x + block_w / 2 > w ) block_w = (w - this->block_x) * 2; if( this->block_y + block_h / 2 > h ) block_h = (h - this->block_y) * 2; block_x1 = this->block_x - block_w / 2; block_x2 = this->block_x + block_w / 2; block_y1 = this->block_y - block_h / 2; block_y2 = this->block_y + block_h / 2; // Calculate the maximum area available to scan after rotation. // Must be calculated from the starting range because of cache. // Get coords of rectangle after rotation. double center_x = this->block_x; double center_y = this->block_y; double max_angle = plugin->config.rotation_range; double base_angle1 = atan((float)block_h / block_w); double base_angle2 = atan((float)block_w / block_h); double target_angle1 = base_angle1 + max_angle * 2 * M_PI / 360; double target_angle2 = base_angle2 + max_angle * 2 * M_PI / 360; double radius = sqrt(block_w * block_w + block_h * block_h) / 2; double x1 = center_x - cos(target_angle1) * radius; double y1 = center_y - sin(target_angle1) * radius; double x2 = center_x + sin(target_angle2) * radius; double y2 = center_y - cos(target_angle2) * radius; double x3 = center_x - sin(target_angle2) * radius; double y3 = center_y + cos(target_angle2) * radius; // Track top edge to find greatest area. double max_area1 = 0; //double max_x1 = 0; double max_y1 = 0; for( double x = x1; x < x2; x++ ) { double y = y1 + (y2 - y1) * (x - x1) / (x2 - x1); if( x >= center_x && x < block_x2 && y >= block_y1 && y < center_y ) { double area = fabs(x - center_x) * fabs(y - center_y); if( area > max_area1 ) { max_area1 = area; //max_x1 = x; max_y1 = y; } } } // Track left edge to find greatest area. double max_area2 = 0; double max_x2 = 0; //double max_y2 = 0; for( double y = y1; y < y3; y++ ) { double x = x1 + (x3 - x1) * (y - y1) / (y3 - y1); if( x >= block_x1 && x < center_x && y >= block_y1 && y < center_y ) { double area = fabs(x - center_x) * fabs(y - center_y); if( area > max_area2 ) { max_area2 = area; max_x2 = x; //max_y2 = y; } } } double max_x, max_y; max_x = max_x2; max_y = max_y1; // Get reduced scan coords scan_w = (int)(fabs(max_x - center_x) * 2); scan_h = (int)(fabs(max_y - center_y) * 2); scan_x = (int)(center_x - scan_w / 2); scan_y = (int)(center_y - scan_h / 2); // printf("RotateCVScan::scan_frame center=%d,%d scan=%d,%d %dx%d\n", // this->block_x, this->block_y, scan_x, scan_y, scan_w, scan_h); // printf(" angle_range=%f block= %d,%d,%d,%d\n", max_angle, block_x1, block_y1, block_x2, block_y2); // Determine min angle from size of block double angle1 = atan((double)block_h / block_w); double angle2 = atan((double)(block_h - 1) / (block_w + 1)); double min_angle = fabs(angle2 - angle1) / OVERSAMPLE; min_angle = MAX(min_angle, MIN_ANGLE); #ifdef DEBUG printf("RotateCVScan::scan_frame min_angle=%f\n", min_angle * 360 / 2 / M_PI); #endif cache.remove_all_objects(); if( !skip ) { // Initial search range float angle_range = (float)plugin->config.rotation_range; result = 0; total_steps = plugin->config.rotate_positions; while( angle_range >= min_angle * total_steps ) { scan_angle1 = result - angle_range; scan_angle2 = result + angle_range; set_package_count(total_steps); //set_package_count(1); process_packages(); int64_t min_difference = -1; for( int i = 0; i < get_total_packages(); i++ ) { RotateCVScanPackage *pkg = (RotateCVScanPackage *) get_package(i); if( pkg->difference < min_difference || min_difference == -1 ) { min_difference = pkg->difference; result = pkg->angle; } //break; } angle_range /= 2; //break; } } if( plugin->config.mode2 == MotionCVConfig::SAVE ) { plugin->save_dt = result; } #ifdef DEBUG printf("RotateCVScan::scan_frame 10 angle=%f\n", result); #endif return result; } int64_t RotateCVScan::get_cache(float angle) { int64_t result = -1; cache_lock->lock("RotateCVScan::get_cache"); for( int i = 0; i < cache.total; i++ ) { RotateCVScanCache *ptr = cache.values[i]; if( fabs(ptr->angle - angle) <= MIN_ANGLE ) { result = ptr->difference; break; } } cache_lock->unlock(); return result; } void RotateCVScan::put_cache(float angle, int64_t difference) { RotateCVScanCache *ptr = new RotateCVScanCache(angle, difference); cache_lock->lock("RotateCVScan::put_cache"); cache.append(ptr); cache_lock->unlock(); } RotateCVScanCache::RotateCVScanCache(float angle, int64_t difference) { this->angle = angle; this->difference = difference; }